INVESTIGATION REPORT FOR LNAPL CHARACTERIZATION AND VAPOR MONITORING PROGRAM

DEFENSE FUEL SUPPORT POINT NORWALK 15306 NORWALK BOULEVARD NORWALK, CALIFORNIA

Prepared for

Defense Energy Support Center 8725 John J. Kingman Road Fort Belvoir, Virginia 22060-6222

January 14, 2011

Prepared by

100 WEST WALNUT STREET • PASADENA • CALIFORNIA 91124

INVESTIGATION REPORT FOR LNAPL CHARACTERIZATION AND VAPOR MONITORING PROGRAM

DEFENSE FUEL SUPPORT POINT NORWALK 15306 NORWALK BOULEVARD NORWALK, CALIFORNIA

Prepared for

Defense Energy Support Center 8725 John J. Kingman Road Fort Belvoir, Virginia 22060-6222

January14, 2011

Prepared by

PARSONS 100 WEST WALNUT STREET PASADENA • CALIFORNIA 91124

Reviewed by:

Quin Kinnebrew, P.G. Senior Hydrogeologist

Reviewed by:

Sedener Some

Redwan Hassan, P.G. Project Manager

TABLE OF CONTENTS

ABBR	EVIAT	IONS AN	D ACRONYMS	V					
1	INTRO	DUCTIO	N	1-1					
	1.1	Site Desc	ription	1-1					
	1.2	Geology a	& Hydrogeology	1-1					
2	OBJEC	CTIVES		2-1					
	2.1	CPT/UVC	OST [®] Location Rationale	2-1					
3	FIELD	ACTIVIT	TIES	3-1					
	3.1	Project Planning and Preparation							
		3.1.1	Permitting	3-1					
		3.1.2	Geophysical Clearance	3-1					
	3.2	CPT/UVC	OST [®] Sampling	3-2					
		3.2.1	UVOST [®] System Description	3-2					
		3.2.2	UVOST [®] Technological Description						
		3.2.3	Contaminants Detected with the UVOST [®]						
		3.2.4	UVOST [®] Calibration	3-3					
		3.2.5	Locations and Depths						
		3.2.6	CPT/UVOST [®] Boring Backfill	3-4					
	3.3	Soil Samp	pling	3-4					
	3.4		Probe Installation and Sampling						
		3.4.1	Soil Gas Probe Installation Procedures	3-5					
		3.4.2	Soil Gas Sampling Procedures	3-5					
	3.5	Analytical Methods							
	3.6	Field Variations from Work Plan							
	3.7	Equipment Decontamination							
	3.8	Investigat	ion-Derived Waste Disposal	3-7					
4	INVES	STIGATIO	N RESULTS	4-1					
	4.1	Occurrence of Petroleum Hydrocarbons							
		4.1.1	UVOST [®] and Soil Analytical Results	4-1					
		4.1.2	Distribution of Hydrocarbons	4-6					
	4.2	4.2 Soil Vapor Results							
5	SUMMARY AND RECOMMENDATIONS								

TABLES

- 4-1 Hydrocarbon Fraction in Soil
- 4-2 Volatile Organic Compounds in Soil
- 4-3 Volatile Organic Compounds in Soil Vapor

FIGURES

- 1-1 Site Location Map
- 1-2 Location Map of Geologic Cross-Sections
- 1-3 Geological Cross-Section A-A'
- 1-4 Geological Cross-Section B-B'
- 1-5 Geological Cross-Section C-C'
- 1-6 Geological Cross-Section D-D'
- 1-7 Geological Cross-Section E-E'
- 1-8 Geological Cross-Section F-F'
- 1-9 Geological Cross-Section G-G'
- 1-10 Vapor Monitoring Locations
- 4-1 3-D CSM of LNAPL distribution
- 4-2 Distribution of LNAPLS in Vadose Zone by UVOST
- 4-3 Distribution of LNAPLS near the Water Table by UVOST

APPENDICES

- A. Cone Penetration Test Data Logs
- B. UVOST[®] Data Logs
- C. Laboratory Analytical Results

ABBREVIATIONS AND ACRONYMS

μg/L	micrograms per liter
bgs	below ground surface
btoc	below top of casing
BTEX	benzene, toluene, ethylbenzene, xylenes
Calscience	Calscience Environmental Laboratories, Inc.
CHHSL	California Human Health Screening Level
CPT	Cone Penetration Test
CSM	conceptual site model
DESC	Defense Energy Support Center
DFSP	Defense Fuel Support Point
DigAlert	Underground Service Alert
DTSC	Department of Toxic Substance Control
Gregg Drilling	Gregg Drilling & Testing, Inc.
IDW	investigation-derived waste
JP	jet propellant
KMEP	Kinder Morgan Energy Partners, L.P.
LIF	laser induced fluorescence
LNAPL	light non-aqueous phase liquid
mg/kg	milligrams per kilograms
MTBE	methyl tert-butyl ether
PAH	polycyclic aromatic hydrocarbon
PCBs	polychlorinated biphenyls
PPE	personal protective equipment
RWQCB	Regional Water Quality Control Board, Los Angeles Region
SFPP	Santa Fe Pacific Pipeline, L.P.
site	DFSP Norwalk Facility
SubSurface	SubSurface Surveys & Associates, Inc.
TBA	tert-butyl alcohol
TFS	truck fill stations
TPH	total petroleum hydrocarbons
USEPA	United States Environmental Protection Agency
UVOST	ultra-violet optical screening tool
VMP	vapor monitoring point
VOCs	volatile organic compounds
XeCl	xenon chloride

1 INTRODUCTION

This report presents the results of an investigation to delineate the vertical and lateral distribution of petroleum hydrocarbons in soil at the Defense Fuel Support Point (DFSP) Norwalk facility (site) located at 15306 Norwalk Boulevard, Norwalk, CA. The investigation was conducted in October 2010 and utilized cone penetration test (CPT) and an ultra-violet optical screening tool (UVOST) to help characterize soil types, stratigraphy, and presence of light non-aqueous phase liquid (LNAPL) hydrocarbons. A vapor monitoring program was also initiated to evaluate the soil vapor concentration onsite and assess whether off-gassing vapor may be migrating off-site. Uncertainties existed at the site regarding the presence or extent of residual petroleum or LNAPL. A second objective of the investigation was to better characterize the Bellflower Aquitard to evaluate its effectiveness for protecting the deeper Exposition aquifer from shallower contamination. This report has been prepared on behalf of the Defense Energy Support Center (DESC). The investigation was conducted in response to the Regional Water Quality Control Board, Los Angeles Region (RWQCB) email dated April 15, 2010. The site location map is shown on Figure 1-1.

1.1 Site Description

The DFSP Norwalk facility is a 50-acre facility consisting of 12 aboveground storage tanks that previously stored and distributed jet propellant (JP)-5 and JP-8. Aviation gasoline and JP-4 also were reportedly stored at the facility. Santa Fe Pacific Pipeline, L.P. (SFPP), an operating partner of Kinder Morgan Energy Partners, L.P. (KMEP), leases a 2-acre easement along the southern and eastern boundaries of DFSP for operation of its pipelines, which convey gasoline, diesel, and jet fuel. Within the southern easement lie three active pipelines, one of which is a 16-inch diameter pipeline, designated LS-1, that bends at the southeastern corner of the facility and continues northward within the eastern easement. An abandoned pipeline, likely owned or formerly operated by Golden West Pipeline, also runs along the eastern boundary of the site. The DESC has decommissioned the site, but SFPP pipelines continue to operate. Refer to previous reports for additional detailed background site information, which is not repeated here.

1.2 Geology & Hydrogeology

CPT were performed at the 15 UVOST locations around the site to provide basic interpretations in terms of soil behavior type and various geotechnical parameters using current published empirical correlations¹. Soil encountered during the investigation was comprised primarily of unconsolidated fine sand, silty fine sand, and silt, with lesser concentrations of clay. The depth of investigation was approximately 80 feet below the

¹ Lunne, T., Robertson, P.K., and Powell, J.J.M, 1997. Cone Penetration Testing in geotechnical Practice, E&FN Routledge, 352 p, ISBN 0-7514-0393-8.

ground surface at each location. Figure 1-2 shows the locations of the CPTs and geologic cross-sections prepared using the CPT data. Figures 1-3 through 1-9 depict interpretations of subsurface conditions based on soil logged during this and previous investigations. The CPT logs are presented in Appendix A for those locations logged during this investigation.

The cross sections show that the unconsolidated alluvial sediments at the surface are approximately 50 feet thick and consist mostly of fine sand and silty fine sand with lesser amounts of interbedded silt and clay. A widely continuous sand unit that is approximately 15 to 18 feet thick occurs at the base of the alluvial section. With the water table generally about 30 feet below the ground surface in the site area, this lower sand unit comprises most of the semi-perched aquifer.

Underlying the basal sand of the alluvial section is a finer grained unit comprised mostly of silt and clay, with several interbedded fine sandy layers. This unit, termed the Bellflower Aquitard, is approximately 30 feet thick and generally occurs at a depth of 50 to 80 feet below the ground surface. The interpretation shown on geologic cross-sections A-A', B-B' and D-D' (Figures 1-3, 1-4, and 1-6) indicate that the Bellflower Aquitard is slightly thinner on the east side of the site and dips below the 80 foot depth of investigation to the west. Although there are several fairly continuous thin sand layers within the Bellflower, the predominance of silty and clayey layers most likely retards vertical migration of contaminants through the Aquitard. Previous investigations of this unit noted it to be organic rich, often containing wood fragments.

The Exposition aquifer is the shallowest reported regional aquifer beneath the site². The sand unit at the top of this aquifer, which is reported to be about 70 feet thick in this area, is interpreted to occur at a depth of 72 below the ground surface at drilling location UV-12, as shown on the west-to-east cross-sections A-A' (Figure 1-3) and B-B' (Figure 1-4). Additional information on subsurface conditions encountered below the depth of this investigation (80 feet) for the DFSP property is available in previous reports on the DFSP site, and indicate that the Exposition aquifer is comprised primarily of fine sand and silty fine sand.

² California Department of Water Resources (CDWR), 1961. Bulletin No. 104 – Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County (Ground Water Geology), dated June 1961 (reprinted May 1991).

2 OBJECTIVES

The objectives of this investigation were as follows:

- Assess whether petroleum hydrocarbons were present in soil and groundwater at specific onsite areas where existing data is insufficient to determine its presence or its lateral/vertical extent;
- Confirm the presence of the Bellflower Aquitard; and
- Evaluate if soil vapors containing volatile organic compounds (VOCs) are migrating off-site to the adjacent park or residential areas.

To address the first objective, UVOST technology was used to assess the presence and relative concentrations of petroleum hydrocarbons in the underlying soil. There were 15 UVOST locations sampled during this investigation as shown on Figure 1-2.

The second objective was to assess the depth of the interface between the surficial sandy and silty alluvium and the underlying clay-rich aquitard. This objective was met using CPT data obtained simultaneously with UVOST sampling. The CPT data were collected at widely-spaced locations throughout the site and were located at the same UVOST locations (Figure 1-2).

The third objective, assessing the potential vapor exposure to neighboring residents or park users, was addressed by implementing a soil vapor monitoring program. This program was initiated by installing seven on-site vapor monitoring points (VMPs). Five VMPs were located along the site's northern border, one in the northwest corner, and one in the northeast corner (Figure 1-10). Soil gas will be sampled quarterly for one year and analyzed for VOCs via EPA Method TO-15. If the results show that there are no impacts or detections above risk-based levels, then the soil gas will only be sampled annually. If the results contain detections above the risk-based levels, then future action will be discussed with all parties.

2.1 CPT/UVOST Location Rationale

Abundant soil and groundwater analytical data have been generated from on-site investigations since 1988. The lateral and vertical extent of total petroleum hydrocarbon (TPH)-impacted soil and groundwater has been relatively well assessed. Remedial systems operating on-site since that time have significantly reduced the concentrations and extent of TPH-impacted soil and groundwater throughout the site. However, there was some uncertainty regarding the location and extent of residual TPH in soil and groundwater within specific portions of the site. Uncertainties regarding the continuity of the Bellflower Aquitard underlying the site also existed. It was proposed that these data gaps be eliminated by using a relatively rapid screening tool (UVOST technology) combined with CPT data to assess the underlying soils and residual TPH (if present).

The data gaps were identified, in part, by assessing site geologic data and recent soil and groundwater analytical data, including the most recent semiannual groundwater monitoring report³. Several relatively large areas on-site have been reported with no detectable TPH in groundwater during the 2009 and early 2010 sampling events. These areas, located within the site's northern portion, west-central portion, southwestern portion, and southeastern portion west of 24-inch valve area were excluded from UVOST sampling program. Due to the absence of TPH in groundwater at these locations, significant TPH concentrations were not anticipated within the associated soils. In addition, the SFPP lease area and the southeast block valve areas were excluded from this investigation.

The continuity of the Bellflower Aquitard underlying the site was also assessed at each UVOST location. For this reason, in part, the UVOST locations were widely distributed throughout the site, primarily in areas where Bellflower Aquitard data was deficient.

A brief discussion of known data gaps and rationale for choosing each UVOST location is provided in Section 3.0 of Parsons' work plan⁴, dated September 14, 2010.

³ CH2MHill, 2010, Final First Semiannual 2010 Groundwater Monitoring Report, Defense Fuel Support Point Norwalk, California, July 22.

⁴ Parsons, 2010a.

3 FIELD ACTIVITIES

The investigations were conducted in accordance with a work plan⁵ and an addendum⁶ for the site. Approval of the work plan and addendum were received from the RWQCB⁷. This effort is comprised of fifteen CPT/UVOST soil locations located throughout the site, the installation of six permanent soil gas monitoring points located along the northern property line, and soil and soil gas sampling. The field work was conducted in October 2010.

3.1 Project Planning and Preparation

Preparation for fieldwork included acquisition of field equipment and permits, mobilization, and coordinating lines of communication. Parsons procured a geophysical survey subcontractor to clear the planned CPT/UVOST and VMP locations.

3.1.1 Permitting

Prior to the start of subsurface activities, soil boring permits to drive the CPT/UVOST tools into saturated soils beneath the site were obtained prior to this investigation from the Los Angeles County Department of Public Work and City of Norwalk. Well permits required for drilling and installation of VMPs were also obtained from the City of Norwalk prior to the field activities.

3.1.2 Geophysical Clearance

Underground Service Alert (DigAlert) was notified of Parsons planned subsurface activities at least 48 hours prior to the start of the field investigation. The proposed CPT/UVOST and VMP locations were clearly marked with white paint. DigAlert contacted all utility owners within the site vicinity and notified them of the subsurface investigation plans.

In addition to notifying DigAlert, each CPT/UVOST and VMP location and surrounding areas were surveyed using a combination of electromagnetic induction and ground-penetrating radar instruments to investigate and clear all boring locations for any subsurface obstructions (e.g., piping, utilities, metallic debris, etc.). SubSurface Surveys

⁵ Parsons, 2010a, LNAPL Characterization via Ultra-Violet Optical Screening Tool Technology and Vapor Monitoring Program, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California, dated September 14.

 ⁶ Parsons, 2010b, Addendum to the LNAPL Characterization via Ultra-Violet Optical Screening Tool Technology and Vapor Monitoring Program Work Plan, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California, dated October 12.

⁷ RWQCB, 2010, Workplan Approval for Light Non-Aqueous Phase Liquid (LNAPL) Characterization via Ultra-Violet Optical Screening Tool Technology and Vapor Monitoring Program, Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk, California (SCP NO. 0286A, Site No. 16638), letter dated October 26.

& Associates, Inc. (SubSurface) conducted the geophysical survey immediately prior to the start of the field investigation. They clearly delineated all underground utility lines detected in proximity to the sampling locations.

If any utility main was identified within 3 feet of a proposed CPT/UVOST or VMP location, the planned location would be moved to an alternate point up to 3 feet away from the utility but within the cleared area surrounding the boring location. None of the planned locations were moved more than 3 feet from the original point.

3.2 CPT/UVOST[®] Sampling

CPT/UVOST sampling was conducted between October 25 and 27, 2010. Gregg Drilling & Testing, Inc. (Gregg Drilling) of Signal Hill, California provided the CPT rig equipped with the UVOST sampling tool. The CPT/UVOST sampling was overseen by a California-licensed Professional Geologist.

3.2.1 UVOST[®] System Description

The UVOST, developed by Dakota Industries, Inc., is a newer and improved version of the former technology referred to as the rapid optical screening tool (ROSTTM). The UVOST system has proven successful in accurately delineating the location and relative concentrations of gasoline, diesel fuel, jet fuel, hydraulic fluids, and other hydrocarbon types in the subsurface soils above and below the groundwater table. This system also differentiates between these hydrocarbon types if comingled at one location. The UVOST is the only commercially-available sensor of its type to have its performance validated by the USEPA⁸. Coupled with the CPT sensor, the UVOST survey provides real-time field screening of the physical characteristics of soil and chemical characteristics of petroleum hydrocarbons within spill areas.

3.2.2 UVOST[®] Technological Description

The UVOST module is mounted above a standard piezocone (penetrometer) used by a CPT truck or other direct push vehicle. The UVOST module uses the principle of fluorescence spectrometry by irradiating the soil with ultra-violet light (308 nanometers) that is generated by a xenon chloride (XeCl) excimer laser mounted within the CPT truck. The ultra-violet light is transmitted from the laser to the subsurface module through a fiber optic cable (containing 600 micrometer diameter fibers). The ultra-violet light then passes from the fiber optic cable through a small sapphire window (6.35 millimeter diameter) on the side of the module and then into the soil. Any aromatic petroleum hydrocarbons present in the soil absorb the light energy during radiation, and immediately re-emit a light (fluoresce) containing a longer wavelength. This re-emission is termed fluorescence (or laser induced fluorescence [LIF]). The "signal" light is transmitted through a fiber optic cable back up to the truck to be analyzed. The UVOST

⁸ United States Environmental Protection Agency (USEPA), 2003, Using the Triad Approach to Streamline Brownfields Site Assessment and Cleanup – Brownfields Technology Primer Series, June 2003.

system measures the intensity and emission decay at various wavelengths (350 to 500 nanometers). The measured emissions decay is used by software within the CPT rig to determine a product "signature" in real time every 2 centimeters. The petroleum hydrocarbon and soil data collected at 2 centimeter intervals provides a continuous color coded log of lithology and hydrocarbon distribution, minimizing the possibility of missing small zones of contamination and potential migration pathways.

3.2.3 Contaminants Detected with the UVOST

As noted above, the UVOST system identifies free phase and residual petroleum hydrocarbons in the subsurface soils above and below the water table. Petroleum hydrocarbon types are detected by way of the fluorescence response of their polycyclic aromatic hydrocarbon (PAH) constituents. Contaminant types detected using the UVOST system include gasoline, diesel, jet fuel (kerosene), motor oil, cutting oil, hydraulic oil, and crude oil. The detection limit for these contaminants varies between 10 and 500 milligrams per kilogram (mg/kg), depending on the contaminant and associated soil matrix type. Contaminants rarely seen with this system include extremely weathered gasoline, coal tar, creosote, bunker oil, polychlorinated biphenyls (PCBs), chlorinated solvents, and dissolved phase PAHs.

3.2.4 UVOST Calibration

As noted above, a soil sample contaminated with petroleum substances will have a fluorescence intensity that is proportional to the contaminant concentration. The concentration of the hydrocarbon fraction in soil at depth is determined by comparing its fluorescence intensity with calibration standards. The UVOST system was calibrated to these standards by Gregg Drilling prior to sampling at each UVOST location.

In addition to calibrating with known standards, soil at four UVOST locations (UV-2, UV-5, UV-10, and UV-12) was sampled and analyzed in order to compare UVOST data with the soil's petroleum hydrocarbon concentrations as measured by a fixed laboratory. Section 3.3 below provides a description of the sampling procedures. The soil samples collected at these four locations were reported by the UVOST system as containing elevated petroleum hydrocarbon concentrations. A comparison of the UVOST and laboratory data is provided in Section 4.1.1.

3.2.5 Locations and Depths

Fifteen locations (UV-1 through UV-15) within the DFSP Norwalk facility were sampled with the CPT/UVOST system in a manner identical to that described in Section 3.2. These locations are shown on Figure 1-2. A description and rationale for these locations are provided in Section 3 of Parsons' work plan⁹.

^{9 &}lt;sub>Parsons, 2010a</sub>.

Each CPT/UVOST location was sampled to a depth of approximately 80 feet. This relatively deep sampling was conducted in order to assess the presence and depth of the underlying Bellflower Aquitard with the CPT tool. Note that the UVOST tool is located approximately 2.5 feet higher than the CPT tool, so the total UVOST sampling depth will be that much shallower than the total CPT depth. The CPT and UVOST logs for this investigation are provided in Appendix A and B, respectively of this report.

3.2.6 CPT/UVOST Boring Backfill

Each open boring resulting from the CPT/UVOST investigation was backfilled with a cement-bentonite slurry (a 95%:5% ratio). The slurry was pumped through a tremie pipe that extended to the bottom of the open boring, thus displacing groundwater and soil debris upward and out of the boring. The tremie pipe was pulled up incrementally following successive injections of slurry. The slurry was monitored for settlement at the surface. Additional slurry was poured into the boring to compensate for any settlement.

3.3 Soil Sampling

As noted above, soil samples were collected at four locations (UV-2, UV-5, UV-10, and UV-12) immediately following completion of CPT/UVOST sampling. The UVOST data indicated the presence of elevated petroleum hydrocarbon concentrations at each of these locations at depths between 26 and 33 feet. The soil samples were collected from the depth with the highest measured UVOST petroleum hydrocarbon concentration.

The CPT/UVOST sampling rig was used to collect the soil samples. The sampling device was comprised of a stainless steel drive sampler lined with two stainless steel tubes (1-inch diameter by 6-inch length). Immediately following the collection of soil, the lower tube was capped at each end with Teflon tape and plastic caps. The capped sample was labeled, placed in a sealable plastic bag, and then immediately placed into an ice-cooled chest. The soil within the remaining upper tube was used for classification.

Note that three attempts were made to collect clayey soils at depth. The strength of the clays, however, was insufficient to drive the sampler's inner rod upward, thus preventing filling of the sampling tubes.

The collected soil samples were reviewed for classification by a California-licensed professional geologist. The soil descriptions included soil type, texture (grain size; using the Unified Soil Classification System), color (Munsell soil color system), general moisture content, and evidence of contamination.

3.4 Soil Gas Probe Installation and Sampling

Seven permanent soil gas probes (VMP-32 through VMP-38) were installed during this investigation; five along the northern site border near the outline of the dissolved plume, one in the northwest corner, and one in the northeast corner. The VMP locations are shown on Figure 1-10. Each location contained two soil vapor probes placed at depths of 5 and 15 feet.

3.4.1 Soil Gas Probe Installation Procedures

Due to the previous collection of lithologic data within the site, soil sampling and logging was not conducted prior to soil probe installation. A Geoprobe[®] drill rig was used to push an expendable steel point directly to a depth of 15 feet. New Teflon tubing (0.25inch outside diameter, 0.17-inch inside diameter) attached to a soil gas filter (vapor probe) was then placed down through the open boring to the planned soil gas sampling depth. After installing the tubing and filter into the boring to a depth of 15 feet, a steel measuring tape was used to verify the depth of the boring and soil gas filter. Number 2/12 sand was then placed into the boring to fill the annular space surrounding the soil gas filter to at least 6-inches below and above the filter. The sand thickness was verified with the steel measuring tape. After the filter pack had been created, approximately 6inches of granular bentonite (a seal) was then placed above the filter pack. Once this first layer of bentonite had been hydrated, additional granular bentonite was used to fill the boring up to the next sample interval (approximately 5.5 feet below ground surface (bgs)), then hydrated again prior to placement of an additional soil vapor probe and sand. The upper soil vapor probe was placed at a depth between approximately 5 and 5.5 feet bgs. The placement of sand and bentonite within and above this interval was conducted in a manner similar to that described above. Bentonite was used to fill the boring to a depth of approximately 0.5 feet. A sampling valve was used to cap the top of the Teflon tubing, which extended 1 to 2 feet above ground surface.

The upper portion of the Teflon tubing associated with each sampling location was housed within a well box set in concrete. The well box and supporting concrete was mounted flush with the ground surface. Tamper-resistant bolts secured the well box cover. All well boxes were permanently marked with probe identification numbers.

3.4.2 Soil Gas Sampling Procedures

Soil gas sampling was performed in general accordance with the Advisory for Active Soil Gas Investigation and updates, published by the Department of Toxic Substances Control (DTSC) and the RWQCB¹⁰. The installed vapor tubing and filter were allowed to set more than 24 hours prior to purging and sampling. Soil gas samples were collected from each vapor probe after purging seven tubing volumes. The purge volume used was based on the method specified in the DTSC and RWQCB soil gas sampling guidelines. After purging, soil gas samples were collected from each vapor probe in a Summa canister. Each Summa canister used during soil gas collection contained a dedicated flow regulator. The Summa canisters were filled (following purging) at a rate of less than 200 milliliters per minute. Once sampling was complete, the Summa canister was sealed and labeled (using non-volatile ink) with the sample location, sample depth, date, and time. The filled Summa canisters were transported to the laboratory (Calscience Environmental Laboratories, Inc.) immediately following testing.

¹⁰ DTSC/RWQCB, 2003, Advisory – Active Soil Gas Investigations, January 28.

Indications of excess soil moisture in the soil zone being sampled (as suggested by saturated soil or perched groundwater) were not encountered during drilling or soil gas sampling. Visible soil moisture or water was not observed in the tubing during purging or during soil gas sampling. Due to its apparent absence, excess soil moisture was not considered a potential threat to the viability of the collected soil gas samples.

3.5 Analytical Methods

Calscience Environmental Laboratories, Inc. (Calscience) analyzed the soil and soil gas samples collected during this investigation. Calscience is certified by the California Department of Health Services Environmental Accreditation Laboratory Program. Each collected soil sample was analyzed for the following compounds:

- TPH as gasoline using USEPA Method 8015B (modified);
- TPH as JP-5 using USEPA Method 8015B (modified); and
- VOCs using USEPA Method 8260B (via 5035).

The soil gas samples were analyzed for VOCs using United Stated Environmental Protection Agency (USEPA) Method TO-15.

Analytical data summary tables for soil and soil gas are provided in Tables 4-1 through 4-3. Copies of the final soil and soil gas laboratory reports are provided in Appendix C.

3.6 Field Variations from Work Plan

All field activities were conducted in general conformance with Parsons' sampling work plan¹¹ and work plan addendum¹². The sampling locations were consistent with those proposed. Some of the locations were adjusted a few feet in the field to accommodate physical or subsurface obstructions. Other variances included the following:

- As per the work plan, soil samples were collected from UV-2, UV-10, and UV-12. In addition to these sampling locations, a soil sample was also collected at UV-5.
- Soil samples were only collected at depths between 28 and 32 feet in UV-2, UV-5, UV-10, and UV-12. The soils at these depths were reported by the UVOST system as containing elevated petroleum hydrocarbon concentrations. After multiple sampling attempts, sampling at depths greater than 32 feet was stopped. As noted in Section 3.3, the relatively low strengths of the clayey soils at deeper depths were insufficient to drive the sampler's inner rod upward during sampling, thus preventing filling of the sampling tubes.

^{11 &}lt;sub>Parsons, 2010a</sub>.

^{12 &}lt;sub>Parsons, 2010b.</sub>

• The soil sampler utilized by the CPT rig contained two stainless steel tubes (1inch diameter by 6-inch length). Due to the relatively small quantity of soil collected, geotechnical testing of pore fluid saturation and grain size distribution was not conducted.

3.7 Equipment Decontamination

All soil sampling equipment that came into contact with potentially contaminated soil or water was carefully decontaminated to assure the quality of samples collected and prevent transference of impacted materials from the area sampled. Decontamination was conducted prior to and after each use of equipment. All sampling devices used were decontaminated according to USEPA Region IX recommended procedures.

The Geoprobe[®] and CPT/UVOST drilling and sampling equipment used were decontaminated using the following procedures:

- Non-phosphate detergent and tap water wash,
- Initial tap water rinse, and
- Final distilled water rinse.

The wash water and rinse water generated during the field investigation were placed into 55-gallon drums. These drums were stored within the southwestern portion of the DFSP facility (near the office area).

3.8 Investigation-Derived Waste Disposal

Different types of investigation-derived waste (IDW) were generated during the field activities, included the following:

- Used personal protective equipment (PPE),
- Disposable sampling equipment,
- Decontamination fluids, and
- Soil cuttings.

IDW was managed and disposed of in accordance with current Federal, State, and local requirements. IDW was labeled and stored in accordance with the requirements of the Los Angeles County Health Department.

Soil cuttings and decontamination water generated during field investigations were collected in properly labeled and sealed U.S. DOT approved 55-gallon drums. At the end of the field program, the drums were moved to the southwestern portion of the DESC facility. Profiling of soil cuttings and waste water was done to ensure appropriate disposal. Proper arrangements were made to haul and dispose of the IDW drums.

Used PPE and disposable equipment was double bagged and placed in a municipal refuse dumpster at the site. These wastes are not considered hazardous and were sent to a municipal landfill.

4 INVESTIGATION RESULTS

This section discusses the results from the LNAPL and soil vapor investigations.

4.1 Occurrence of Petroleum Hydrocarbons

The vertical distribution of petroleum hydrocarbons was investigated using UVOST technology. The UVOST logs are provided in Appendix B. The UVOST module, attached above the piezocone, works on the principal that PAHs, located in soil and/or groundwater, fluoresce when irradiated by ultra violet light. Different types of PAHs will fluoresce at different wave lengths leaving different characteristic signatures. Measuring the intensity and wavelength of the fluoresced PAH allows one to assess the type and relative concentration of the PAH present in the subsurface. In general, as the number of aromatic (benzene) rings increases, the fluorescent response shifts toward longer wavelengths. Therefore, lighter compounds tend to fluoresce at shorter wavelengths and heavier compounds fluoresce at longer wavelengths. The intensity of the radiation emitted by the contaminant is an indication of the relative concentration of aromatic rings in the compounds present. Current UVOST technology can only identify contaminants generically and only qualitative assessments are realistic.

4.1.1 UVOST and Soil Analytical Results

- UV-1 Borehole location UV-1 is situated between the southern water tank and Tank 55003. Soil boring (DPT-34), sampled immediately northwest of the water tank in June 2010, indicated the presence of TPH in soil at 20 and 25 feet. The UVOST log for UV-1 (Appendix B) indicates only background levels of fluorescence down to a depth of 23 feet bgs. A relatively low magnitude spike in fluorescence at 25.8 feet indicates that a low concentration PAHs may be present. The graphic "callout" on the log at this depth indicates the waveform character of a mixture of kerosene (jet fuel) with a large Channel 1 (shorter wavelength) response and diesel fuel (longer wave lengths) with moderate Channel 3 and 4 responses. Weathering of the product maybe masking the true identity of the product, but the concentration is indicated to be low and the distribution is limited to a one or two foot smear zone near the water table. A comparison of the soil types from the CPT and UVOST indicates that the minor UVOST increases at deeper depths are associated with silt and clay layers that are interpreted to be organic rich and contain "natural" or background fluorescence. There are no PAHs indicated in the Bellflower Aquitard below the alluvial basal sand unit.
- UV-2 Location UV-2 is situated immediately north of the truck fill stations (TFS) and just west of MW-15. Free product has been measured at MW-15 since 2002. The UVOST log indicates a large amplitude spike at 29.8 to 30.4 feet bgs, which is about 2 feet below the current potentiometric surface. Several smaller magnitude increases in fluorescence occur at 11-12' bgs and 18-19' bgs. The CPT log indicates that these depths are clayey silt or silty clay layers immediately above and below a sandy unit. These may be indicative of irreducible

concentrations of hydrocarbons or may be natural organic rich layers. The "callout" graph on the UVOST log indicates higher voltages in the longer wavelengths, and therefore has a different hydrocarbon character than shown at UV-1. The UV-2 waveform character is more similar to motor oil or gasoline. This may indicate a different source at the UV-2 location than at UV-1. There are no PAHs indicated on the UVOST log in the Bellflower Aquitard below the alluvial basal sand unit.

A soil sample was collected at location UV-2 at a depth of 30 feet bgs, in the exact interval of the high UV reflectance spike. The laboratory analytical results, summarized on Table 4-1 and included in Appendix C, show a concentration of 370 mg/kg TPH as gasoline range and 510 mg/kg TPH as JP-5. Considering that there is considerable overlap in the aliphatic carbon chain length of these two analyses (TPH as gasoline has a carbon range of C4 – C14 and TPH as JP-5 has a carbon range of C8 – C17), it is reasonable to conclude that the soil in this smear zone is below the cleanup standard of 1,000 mg/kg. In addition to the TPH analyses, the soil sample was also analyzed for VOCs. Table 4-2 summarizes all of detected VOCs, and shows that many aromatic hydrocarbons, including benzene, toluene, ethylbenzene, and xylenes (BTEX) constituents, were detected and contributed to the UV reflectance spike. No oxygenates (methyl tert-butyl ether [MTBE], tert-butyl alcohol [TBA], and others) were detected.

- **UV-3** This borehole is located at the southwest corner of the TFS. Boring DPT-4 was sampled at this location in September 2009, and revealed elevated TPH concentrations (11,000 mg/kg as gasoline and 6,100 mg/kg as JP-5) at a depth of 25 feet (deepest collected soil sample). The UVOST log indicates low concentrations with a gasoline character (longer wavelengths) at depths between 19.5 and 21.5 feet bgs. This depth corresponds to a clay and silt interval on the CPT log, and is 8 feet above the potentiometric surface. There is no increase in fluorescence at the current water table, and none in the Bellflower Aquitard.
- **UV-4** Location UV-4 is situated south of the TFS, north of the pump house, and just east of well MW-9. Elevated TPH concentrations have been reported in groundwater samples MW-9 (12,600 micrograms per liter (μ g/l) in May 2010), which is used to help define the southeastern limits of the TPH plume that includes the former TFS. Soil boring (DPT-33), located near MW-9, was sampled at a depth of 25 feet in June 2010 and had a TPH concentration of 1,700 mg/kg as gasoline and 2,200 mg/kg as JP-5. The UVOST log indicates low concentrations of PAHs with a gasoline character at depths between 19.5 and 21 feet. This fluorescence spike occurs in a clay and silt interval that is approximately 8 feet above the current water table. The interpretation is that there are no hydrocarbons with sufficient concentration to be mobile LNAPLs below the water table.
- **UV-5** This borehole is located southeast of Tank 80013 between PZ-2 and GMW-10. Historical detections of free product have been encountered at depths between 24 to 28 feet below top of casing (btoc) at these two locations as well as low TPH concentrations in groundwater within this portion of the site. The UVOST log indicates a 0.3 foot layer with PAHs at a depth of 25.3 feet bgs and a 1.3 foot layer with higher concentrations at a depth of 27.8 feet. The "callout"

graphs on the UVOST log indicate higher concentrations with longer wavelengths, more characteristic of gasoline. There is no indication of PAHs below the water table.

A soil sample was collected at location UV-5 at a depth of 28 feet bgs, in the exact interval of the high UV reflectance spike. The composition of the hydrocarbon fractions was further analyzed to determine more precise characteristic of the hydrocarbons. Summary Table 4-1 indicates fairly high concentration primarily in the gasoline range.

In addition to the TPH analyses, the soil sample was also analyzed for VOCs. Like the soil analysis at UV-2, Table 4-2 shows that many aromatic compounds, including BTEX constituents, were detected (some at high concentrations) that contributed to the UV reflectance spike. No oxygenates (MTBE, TBA, and others) were detected.

A core sample from this same depth interval (28 feet bgs) was submitted to Core Lab to measure several geotechnical parameters. Because the core visually looked different on each end, the core was split and each end was analyzed separately. However, the laboratory analytical results, included in Appendix C, were quite similar. The soil type was classified as a silt with 50 to 56 percent of the grains in the silt and clay fraction, and confirms the soil behavior type interpreted on the CPT log. The moisture content varied from 16 to 19 percent, and the pore fluid saturation varied from 84 to 88 percent water and 2 to 9 percent NAPL.

Taken together, the analytical results confirm the UVOST interpretation of a one foot thick layer of hydrocarbons at the water table (28 feet bgs) with the characteristics of gasoline, with a thinner zone with lower concentrations in the overlying unsaturated (vadose) zone at a depth of 25 feet bgs. There are no indications of PAHs below the water table on the UVOST log (Appendix B).

- **UV-6** Borehole UV-6 is located south of Tank 80006, and between GMW-17 and GMW-42. Relatively elevated TPH concentrations remain in groundwater within the vicinity of GMW-17. Historical detects of free product have been encountered at depths between 25 to 32 feet bloc at GMW-17 and TF-11. The UVOST log indicates there are no concentrations of hydrocarbons in the soil column at this location.
- **UV-7** This borehole is located about 25 feet north-northwest of Tank 80006. Early 2010 groundwater data reveal uncertainty (dashed "ND" contours) regarding the limits of TPH-impacted groundwater for two contaminant plumes that are located northwest and north of Tank 80006. The UVOST log indicates that there are no residual concentrations of TPH in the soil column that are contributing to the groundwater plume. The isolated groundwater TPH plume below this tank must have migrated below the tank as a dissolved phase plume.
- **UV-8** Borehole UV-8 is located approximately 150 feet northwest of Tank 80007, between GMW-15 and GMW-7. Approximately 0.02 foot of free product was reported in GMW-7 in October 2009 in the *Second Semiannual 2009*

*Groundwater Monitoring Report*¹³, but was not observed in April, July, or October of 2010. The UVOST log indicates that there are no residual concentrations of TPH in the soil column at this location that may be contributing to the dissolved phase plume.

- **UV-9** Borehole UV-9 is located approximately 45 feet south of Tank 80004, between GMW-45 and TF-23. Free product was reported in TF-23 in October 2009 with a thickness of 0.01 foot, but was not observed prior to this occurrence or subsequently in April, July, or October of 2010. The UVOST log indicates that there are no residual concentrations of TPH in the soil column at this location that may be contributing to the dissolved phase plume.
- **UV-10** Borehole UV-10 is located about 70 feet south of Tank 80008, east of TF-17, and north of TF-18. Free product was measured at TF-17 in October 2010 with a thickness of 0.47 feet. The UVOST log indicates low concentrations of PAHs with a kerosene (jet fuel) characteristic at depths between 24 - 33 feet bgs. The reflectance log indicates two separate zones of contamination at 24 to 26.5 at very low concentrations and another zone of contamination with slightly higher contamination at 32 to 33 feet.

A soil sample was collected at location UV-10 at a depth of 32 feet bgs in the interval of the relatively low UV reflectance spike (see log in Appendix B). The laboratory analytical results (Table 4-1) show a concentration of 32 mg/kg TPH as gasoline range and 3,300 mg/kg TPH as JP-5. This interval is approximately 3 feet below the current potentiometric surface. In addition to the TPH analyses, the soil sample was also analyzed for VOCs. Table 4-2 shows that many aromatic compounds, including BTEX constituents, were detected at low concentrations that contributed to the UV reflectance spike, but no oxygenate (MTBE, TBA, and others) were detected. Based on the UVOST log and the laboratory analytical results, the source for contamination at this location is jet fuel and not gasoline.

- UV-11 Borehole UV-11 is located east of Tank 80008, and west of wells GMW-48, GMW-50, and GMW-51. Historically, free product was measured in all of these wells. However, the UVOST log indicates that there are no residual concentrations of TPH in the soil column at this location that may be contributing to the dissolved phase plume.
- **UV-12** This borehole is located along the east perimeter of the site adjacent to Holifield Park and between wells GW-15 and GW-62. Free product (0.11 feet) was measured in GW-15 and 0.18 feet of free product was measured at GMW-62 in October 2010. The UVOST log indicates a moderate UV reflectance spike at a depth of 29.8 to 30.1 feet bgs. The waveform character in the "callout" for this interval indicates kerosene (jet fuel) type source. The UVOST log does not indicate any contamination below 31 feet.

¹³ Parsons, 2009, Second Semiannual 2009 Groundwater Monitoring Report, Defense Fuel Support Point Norwalk, DESC, January 21.

A soil sample was collected at location UV-12 at a depth of 30 feet bgs, in the exact interval of the moderate UV reflectance spike. The composition of the hydrocarbon fractions was further analyzed to determine more precise characteristics of the hydrocarbons. Table 4-1 indicates that low concentrations of TPH as JP-5 were more prevalent.

In addition to the TPH analyses, the soil sample was also analyzed for VOCs. Table 4-2 shows that, like the soil analysis at UV-2, UV-5, and UV-10, many aromatic compounds, including BTEX constituents were detected (none at high concentrations) that contributed to the UV reflectance spike. No oxygenates (MTBE, TBA, and others) were detected (see Appendix C).

Taken together, the analytical results confirm the UVOST interpretation of a thin (less than one foot thick) zone near the water table (30 feet bgs) with low level concentrations of hydrocarbons with the characteristics of jet fuel. The thickness, concentration, and lack of vertical head indicate that the hydrocarbons are residual and no longer migrating. However, they may contribute to the dissolved phase plume. There is no indication of PAHs below the water table.

UV-13 Borehole UV-11 is located southeast of Tank 55004 near monitoring well GMW-53. Free product was measured in GMW-53 in April 2010 with a thickness of 0.01 foot, but was not present in July or October of 2010. Two wells located north of this plume have been used to assess the northern extent of free product and TPH concentrations in groundwater. The absence of detectable TPH in MW-16 indicates that TPH-impacted soil does not extend north past this location.

The UVOST log indicates a slight UV reflectance spike at a depth of 12 feet bgs, but this is associated with a clayey silt and silty clay unit on the CPT log. The spike is interpreted to be natural organic material. There appears to be no residual concentrations of TPH (especially jet fuel type) in the soil column at this location that may be contributing to the dissolved phase plume.

UV-14 This borehole is located south of Tank 80007 near GMW-44 and TF-15. Free product has been detected historically at TF-15 from 1996 through 2004, but has not been observed since November 2004 and has never been observed in GMW-44. The UVOST log (Appendix B) indicates that residual hydrocarbon concentrations occur near the current water table at a depth of 28.6 feet bgs. The higher concentration spike is about 0.5 feet thick and indicates a kerosene (jet fuel) waveform character. A second UV reflectance spike occurs at a depth of 31.9 to 32.6 feet and also shows a jet fuel character. Both of these layers of hydrocarbon contamination occur within a sandy interval, based on the CPT interpretation. Based on the minimal thickness of these contaminated zones, the lack of vertical head, and the moderate magnitude UV reflectance, the hydrocarbon contamination at this location is at irreducible residual levels that are no longer mobile, but may still contribute to the dissolved phase plume. No hydrocarbon NAPLs are indicated below the alluvial section in the Bellflower aquifer.

UV-15 Borehole UV-15 is located southeast of Tank 80001. This CPT/UVOST location was selected to provide a northwest area point for the site cross-section and to confirm the presence and thickness of the Bellflower Aquitard. The UVOST log indicates that there are no residual concentrations of TPH in the soil column at this location that may be contributing to the dissolved phase plume.

4.1.2 Distribution of Hydrocarbons

The following interpretations are based on the observations presented above. A review of the cross sections (Figures 1-3 through 1.9) show that residual LNAPLs occur both above the water table (vadose zone) and below the water table (saturated zone). Residual LNAPLs in the saturated zone more readily contribute to the dissolved phase contaminant plumes, which are described in more detail in the semiannual reports.

Figure 4-1 shows a conceptual site model (CSM) that integrates all of the CPT and UVOST data. The vertical and lateral extents of the contamination shown on the CSM are based on the UVOST reflectance, and since the UVOST tool detects only nonaqueous phase aromatic hydrocarbons - the plume extents shown do not depict the extent of the dissolved phase plumes. Although the UVOST tool measures UV reflectance every 0.1 foot, as shown on the logs in Appendix B, the data for modeling was reduced to the maximum reflectance value for each foot. This has the effect of exaggerating the thickness and magnitude of contamination shown on the CSM and also on the cross Based on the magnitude of the UV sections shown on Figures 1-3 through 1-9. reflectance on the UVOST logs, the thickness of the NAPL zones, and the soil analytical results, the plumes shown on the CSM are most likely at residual levels and are no longer migrating. However, these residual hydrocarbons do continue to be a source for the dissolved phase plumes. The CSM shows that the residual NAPLs are confined to a few thin layers and are not distributed throughout the entire vadose (unsaturated) zone and do not occur below the historical fluctuations in the water table.

Figure 4-2 shows a plan view of the lateral extents of hydrocarbons in the vadose zone. The limits shown were determined by statistical krieging of the UV reflectance data and were not influenced by geological interpretation. The occurrence of LNAPLs is limited to the area around and south of the TFS as indicated at locations UV-3 and UV-4. The UV waveform for the hydrocarbons in this area and interval is more like a motor oil or gasoline than jet fuel. A small area of LNAPLs above the water table is also indicated at UV-10 at very low concentration. As mentioned above, the waveform type at this location is indicative of jet fuel.

Figure 4-3 shows a plan view of the lateral extents of hydrocarbons at or below the water table. Several areas are indicated to have residual levels of NAPLs. The area extending from the TFS (UV-2) northward toward Tank 55003 (UV-1) is interpreted to be motor oil at UV-2 and low concentration of jet fuel at UV-1. This plume is also shown on cross-section F-F' (Figure 1-8). Another area with LNAPLs at or below the water table occurs southwest of Tank 80008 (UV-10) and extends westward toward Tank 80007 (UV-14). This plume is also shown on Cross-section B-B'' (Figure 1-4). The UV waveform type indicates a jet fuel source, which is confirmed by the laboratory analysis for UV-10

(3,300 mg/kg as TPH as JP-5). The concentration of TPH as JP-5 appears to be lower at UV-10 than at UV-14 based on the magnitude of the UV reflectance at the two wells, but both locations appear to be at irreducible residual concentrations that are no longer mobile.

Figure 4-3 shows a small area of LNAPLs at the east side of the site adjacent to Holifield Park centered around UV-12. Cross sectional views of the contamination in this area are also shown on Figures 1-3, 1-4, and 1-6. As noted above for location UV-12, this plume is identified as jet fuel source based on UV waveform and laboratory analysis of a soil sample. The aerial extent of this plume is limited to the immediate area around GW-15, UV-12, and GMW-62.

A fourth area with LNAPLs near the water table is at UV-5. Although this plume is depicted on Figure 4-3 as comingled with the plume at UV-1 and UV-2, it may also be interpreted as a separate plume based on the different UV waveform character, and different reflectance magnitudes at different stratigraphic levels, as shown on cross section C-C' (Figure 1-5). The LNAPLs at the UV-5 plume are in a thin layer and most likely at irreducible residual levels that are no longer mobile, but will continue to be a source for the dissolved phase plume.

4.2 Soil Vapor Results

Laboratory soil gas samples were analyzed for VOCs and are presents on Table 4-3. The laboratory report is included in Appendix C. There were low level detections ($\leq 0.31 \mu g/L$) for 11 of the VOCs analyzed by the laboratory: 2-butanone, acetone, benzene, carbon disulfide, chloroform, dichlorodifluoromethane, ethylbenzene, o-xylene, p/m-xylene, tetrachloroethene, and toluene. Benzene was detected in two samples: 0.011 $\mu g/L$ in VMP-34 at 15 feet bgs and 0.0036 $\mu g/L$ in VMP-38 at 15 feet bgs.

Concentrations of detected VOCs in soil gas were all below their respective screening concentrations. Vapor risk-based screening concentrations used were residential California Human Health Screening Levels (CHHSLs)¹⁴.

¹⁴ California Environmental Protection Agency (CalEPA), 2005. Use of California Human Health Screening Levels (CHHCLs) in Evaluation of Contaminated Properties. CalEPA OEHHA. January.

5 SUMMARY AND RECOMMENDATIONS

The objectives of this investigation were as follows:

- Assess whether petroleum hydrocarbons are present in soil and groundwater at specific on-site areas where existing data is insufficient to determine its presence or its lateral/vertical extent;
- Confirm the presence of the Bellflower Aquitard; and
- Evaluate the soil vapor concentrations and assess whether off-gassing vapor may be migrating off-site to the adjacent park users or residential areas.

5.1 Summary

The objectives of the investigation as outlined above were met by:

- Conducting CPT at 15 locations;
- Conducting UVOST at 15 locations;
- Collecting soil samples from 4 CPT locations to confirm UVOST results;
- Collecting 1 split soil sample for geotechnical parameters; and
- Collecting 14 soil gas samples from the 7 new VMPs;

Based on the CPT, UVOST, and soil analytical results, hydrocarbon NAPLs were detected at low concentrations in several areas. Where detected, the vertical extent is limited to a 1 to 2 feet thick smear zone at depths near the perched water table, as shown in the CSM depicted on Figure 4-1. Hydrocarbons were not identified at deeper depths in the saturated zone. The detected hydrocarbons are interpreted to be at less than residual saturation and are therefore no longer mobile, based on the low concentrations and lack of LNAPL displacement head. As shown on Figure 4-3, the horizontal extent of hydrocarbons in soil is limited to three specific areas on the southern portions of the site and one area on the eastern edge of the site. The hydrocarbon plume near the TFS is interpreted to have a motor oil or diesel source, and the southwestern plume is interpreted to be a gasoline type. The plume near Tank 80007 and the eastern plume probably had a jet fuel source. The statistically contoured plume extents shown on Figure 4-3 are larger than would be manually interpreted, and show a conservative maximum areal distribution.

The CPT data confirmed the presence of the Bellflower Aquitard everywhere across the site generally at a depth of 50 bgs. The thickness varies from greater than 36 feet on the

west side of the site (UV-6) and thins to 25 feet on the east side (UV-12). The Bellflower Aquitard is comprised mostly of silt and clay, with several interbedded fine sandy layers. Although there are several fairly continuous thin sand layers within the Bellflower, the predominance of silty and clayey layers most likely retards vertical migration of contaminants through the Aquitard.

Soil gas results from the first round of sampling indicate that soil gas has not been impacted with site-related VOCs above screening/action levels in the investigated area of the site along the northern property boundary, in the northwest corner, or in the northeast corner. As proposed, these wells will be sampled again in the first quarter of 2011. A comprehensive report for the vapor monitoring program results will be provide to the RWQCB once all four quarters of data has been evaluated.

5.2 Recommendations

The UVOST data indicates that there are occurrences of residual hydrocarbons in the soil column that are at irreducible concentrations. Therefore, it would not be productive to install an active extraction system to remove free product. It is recommended to utilize passive recovery with absorbent socks to remove the low volume of hydrocarbons that may accumulate in any well. This conclusion does not apply to the current extraction systems that are utilized to manage the dissolved phase plume and influence hydraulic gradients.

Three more quarter of soil gas sampling will be performed at the 7 new VMPs. A letter report will be prepared at the completion of that study to present those results and evaluate the risk of exposure.

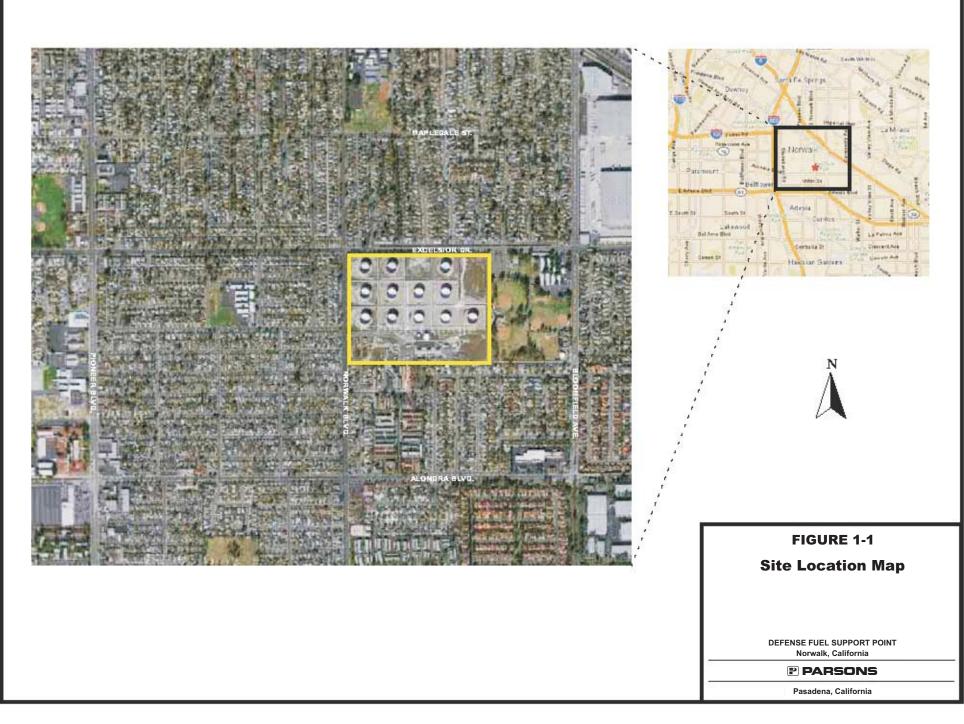
TABLES

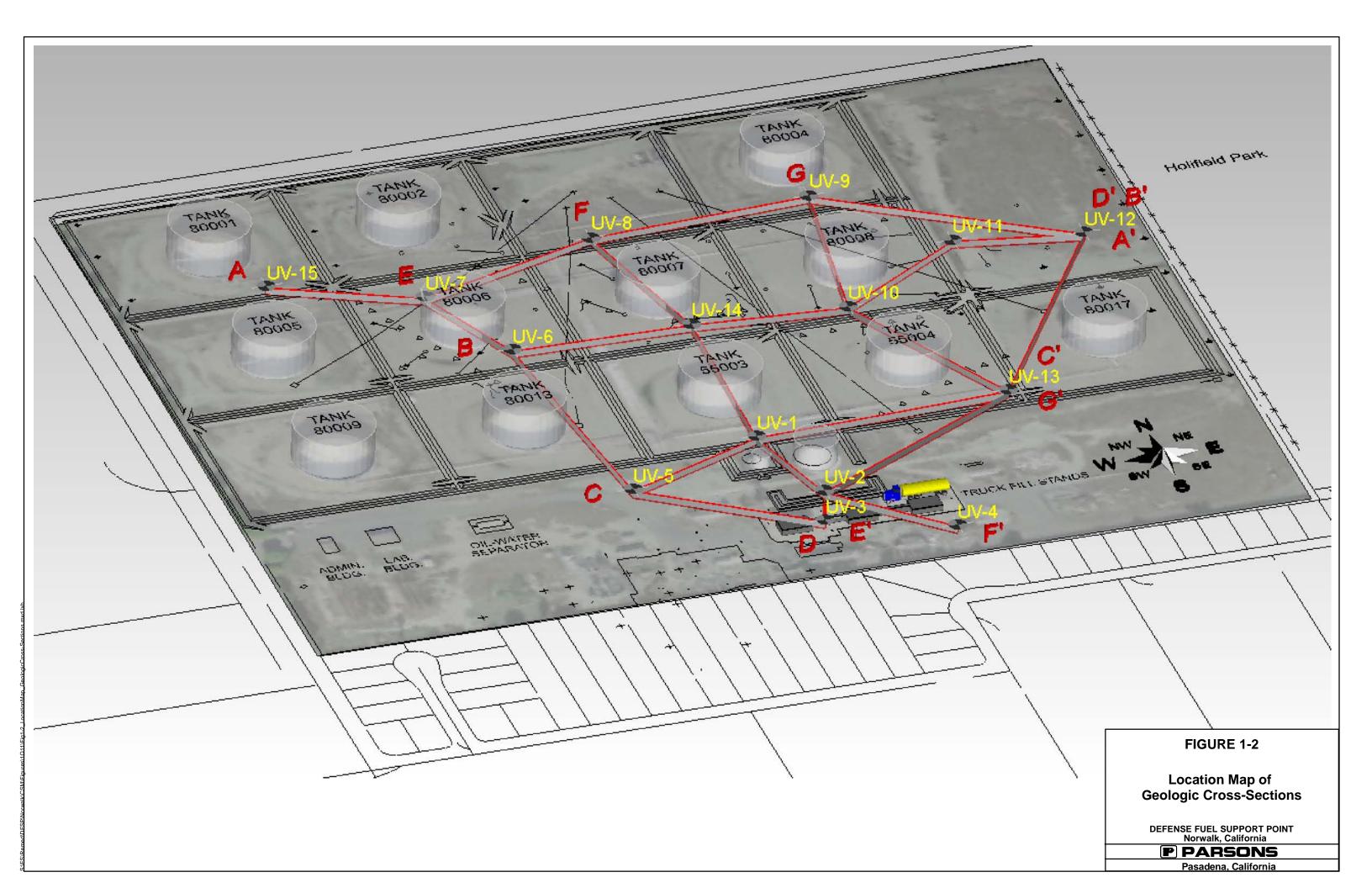
TABLE 4-1 Hydrocarbon Fraction In Soil Analytical Results Defense Fuel Support Point Norwalk, California

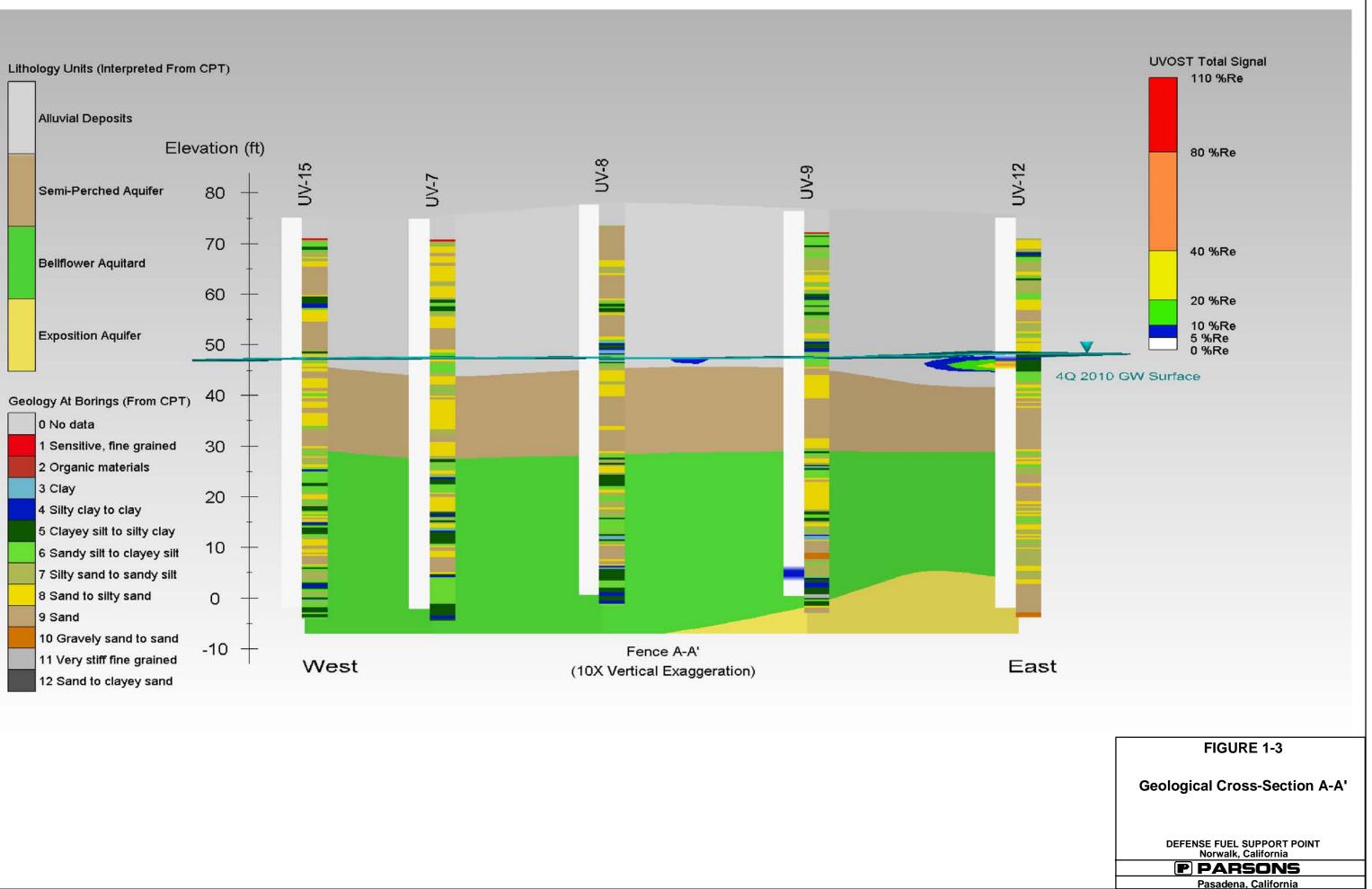
			Sample Location - Depth			
Analytical Parameter	Sample Date	Units	UV-2-30	UV-5-28	UV-10-32	UV-12-30
TPH as Gasoline (C4-C14)	10/27/2010	mg/kg	370	26,000	32	21
TPH as JP5 (C8-C17)	10/27/2010	mg/kg	510	2,200	3,300	630
Aliphatic Hydrocarbons (C5-C8)	10/27/2010	mg/kg		14,000		52
Aromatic Hydrocarbons (C6-C8)	10/27/2010	mg/kg		2,100		15
Aliphatic Hydrocarbons (C9-C18)	10/27/2010	mg/kg		13,000		290
Aromatic Hydrocarbons (C9-C16)	10/27/2010	mg/kg		1,000		17
Aliphatic Hydrocarbons (C19-C32)	10/27/2010	mg/kg		850		< 10
Aromatic Hydrocarbons (C17-C32)	10/27/2010	mg/kg		32		< 10

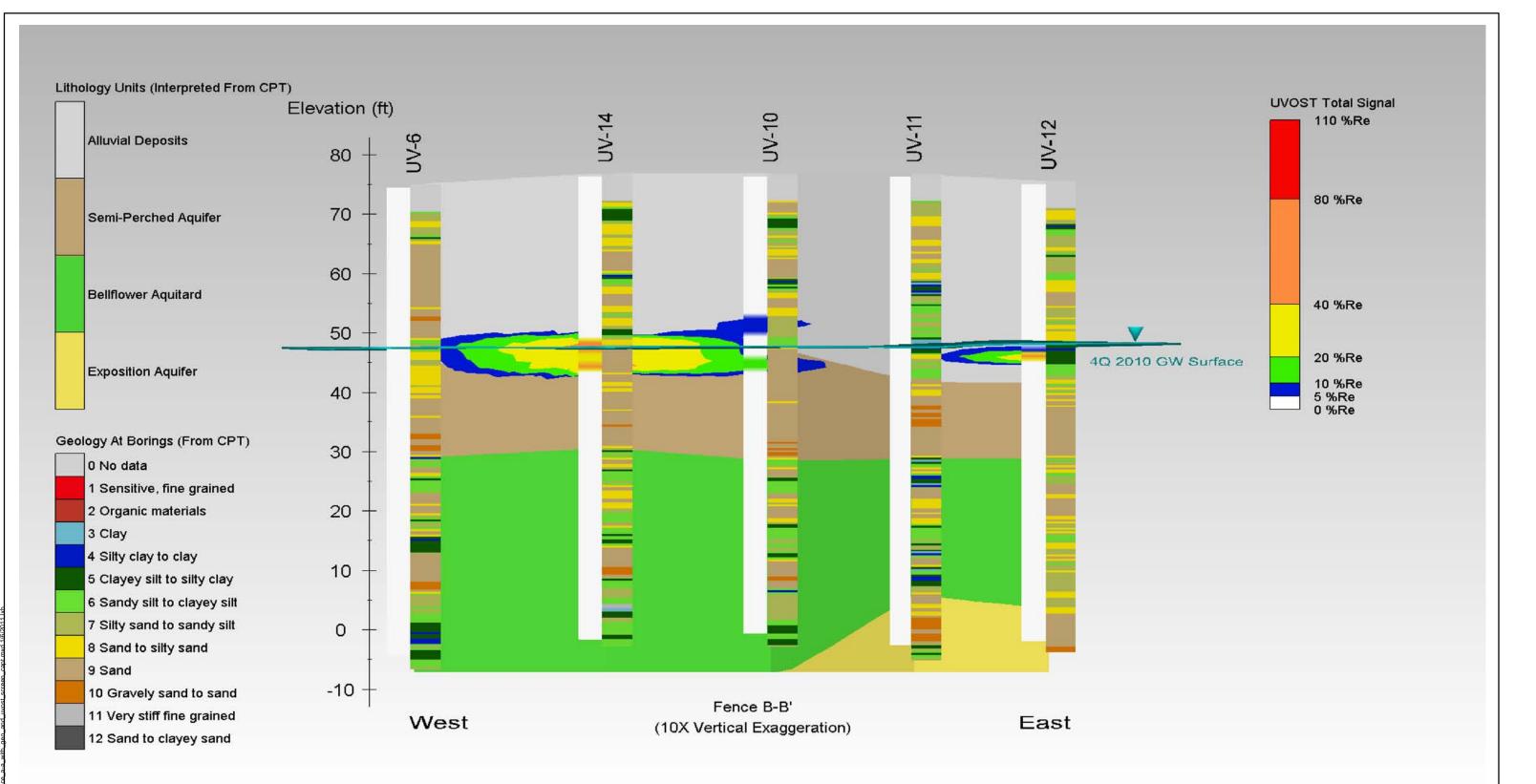
TABLE 4-2 Volatile Organic Compounds In Soil Defense Fuel Support Point Norwalk, California

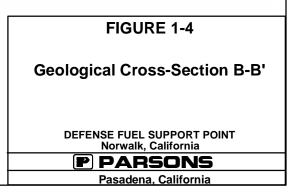
		Sample Location - Depth				
Analytical Parameter	Sample Date	Units	UV-2-30	UV-5-28	UV-10-32	UV-12-30
1,2,4-Trimethylbenzene	10/27/2010	µg/kg	5,300	700,000	340	680
1,3,5-Trimethylbenzene	10/27/2010	µg/kg	1,800	160,000	130 J	240
Benzene	10/27/2010	µg/kg	100	110,000	2,000	1,500
Carbon Disulfide	10/27/2010	µg/kg	< 850 < 9200		< 870	34 J
Chloroform	10/27/2010	µg/kg	40 J	6,900	< 87	< 92
Ethylbenzene	10/27/2010	µg/kg	1,900	340,000	190	470
Isopropylbenzene	10/27/2010	µg/kg	340	27,000	56 J	64 J
Naphthalene	10/27/2010	µg/kg	1,100	72,000	160 J	340 J
n-Butylbenzene	10/27/2010	µg/kg	680	48,000	51 J	67 J
n-Propylbenzene	10/27/2010	µg/kg	960	87,000	100 J	120 J
o-Xylene	10/27/2010	µg/kg	2,700	460,000	190	780
p/m-Xylene	10/27/2010	µg/kg	7,400	1,300,000	560	2,100
p-Isopropyltoluene	10/27/2010	µg/kg	250	9,600	26 J	28 J
sec-Butylbenzene	10/27/2010	µg/kg	220	14,000	27 J	27 J
Toluene	10/27/2010	µg/kg	1,000	660,000	74 J	480


TABLE 4-3 Volatile Organic Compounds in Soil Vapor Defense Fuel Support Point Norwalk, California

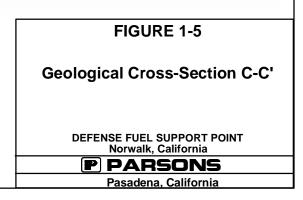

	Sampla	Units	Sample Location - Depth							
Analytical Parameter	Sample Date		VMP-32-05	VMP-32-15	VMP-33-05	VMP-33-15	VMP-34-05	VMP-34-15	VMP-35-05	VMP-35-15
2-Butanone	11/19/2010	μg/L	< 0.011	0.028	< 0.011	< 0.0060	< 0.011	< 0.011	< 0.011	< 0.0044
Acetone	11/19/2010	μg/L	0.031	0.15	< 0.012	0.01	< 0.012	< 0.012	< 0.011	0.011
Benzene	11/19/2010	μg/L	< 0.0039	< 0.0038	< 0.0041	< 0.0022	< 0.0039	0.011	< 0.0038	< 0.0016
Carbon Disulfide	11/19/2010	μg/L	< 0.015	< 0.015	< 0.016	< 0.0085	< 0.015	< 0.015	< 0.015	0.0072
Chloroform	11/19/2010	μg/L	< 0.0060	< 0.0058	< 0.0062	< 0.0033	< 0.0060	< 0.0060	< 0.0058	0.0027
Dichlorodifluoromethane	11/19/2010	μg/L	< 0.0061	< 0.0059	< 0.0063	< 0.0034	0.0067	< 0.0061	< 0.0059	< 0.0025
Ethylbenzene	11/19/2010	μg/L	< 0.0053	0.0064	< 0.0055	< 0.0030	< 0.0053	< 0.0053	< 0.0052	< 0.0022
o-Xylene	11/19/2010	μg/L	< 0.0053	0.015	< 0.0055	< 0.0030	< 0.0053	< 0.0053	< 0.0052	< 0.0022
p/m-Xylene	11/19/2010	μg/L	< 0.021	0.024	< 0.022	< 0.012	< 0.021	< 0.021	< 0.021	< 0.0087
Tetrachloroethene	11/19/2010	μg/L	0.11	0.31	< 0.0086	0.016	< 0.0083	0.013	< 0.0081	0.0064
Toluene	11/19/2010	μg/L	< 0.0046	0.0067	0.0057	0.0071	0.0051	0.026	< 0.0045	0.0039

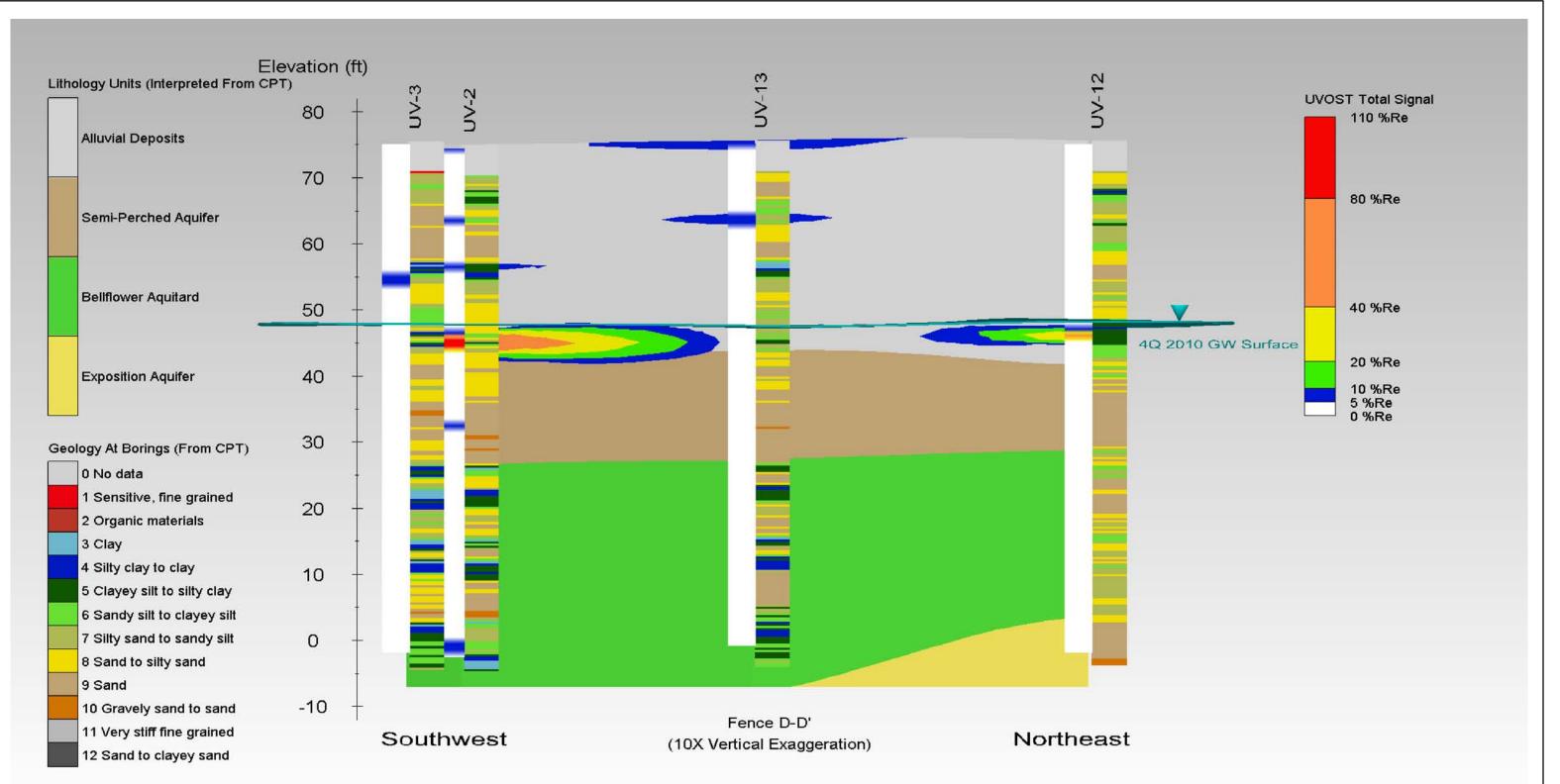

TABLE 4-3 Volatile Organic Compounds in Soil Vapor Defense Fuel Support Point Norwalk, California

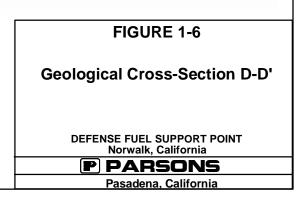

	Sample		Sample Location - Depth						
Analytical Parameter	Date	Units	VMP-36-05	VMP-36-15	VMP-37-05	VMP-37-15	VMP-38-05	VMP-38-15	
2-Butanone	11/19/2010	μg/L	< 0.0044	< 0.0044	< 0.0044	< 0.0044	0.0081	< 0.0044	
Acetone	11/19/2010	μg/L	0.0074	0.0071	0.0078	0.0048	0.0096	0.01	
Benzene	11/19/2010	μg/L	< 0.0016	< 0.0016	< 0.0016	< 0.0016	< 0.0016	0.0036	
Carbon Disulfide	11/19/2010	μg/L	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	
Chloroform	11/19/2010	μg/L	< 0.0024	< 0.0024	< 0.0024	< 0.0024	< 0.0024	< 0.0024	
Dichlorodifluoromethane	11/19/2010	μg/L	< 0.0025	< 0.0025	0.0026	0.0028	0.0029	< 0.0025	
Ethylbenzene	11/19/2010	μg/L	< 0.0022	< 0.0022	< 0.0022	< 0.0022	< 0.0022	< 0.0022	
o-Xylene	11/19/2010	μg/L	< 0.0022	< 0.0022	< 0.0022	< 0.0022	< 0.0022	< 0.0022	
p/m-Xylene	11/19/2010	μg/L	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	< 0.0087	
Tetrachloroethene	11/19/2010	μg/L	< 0.0034	0.0065	< 0.0034	< 0.0034	< 0.0034	0.014	
Toluene	11/19/2010	μg/L	0.0033	0.003	< 0.0019	0.0023	0.0032	0.0097	

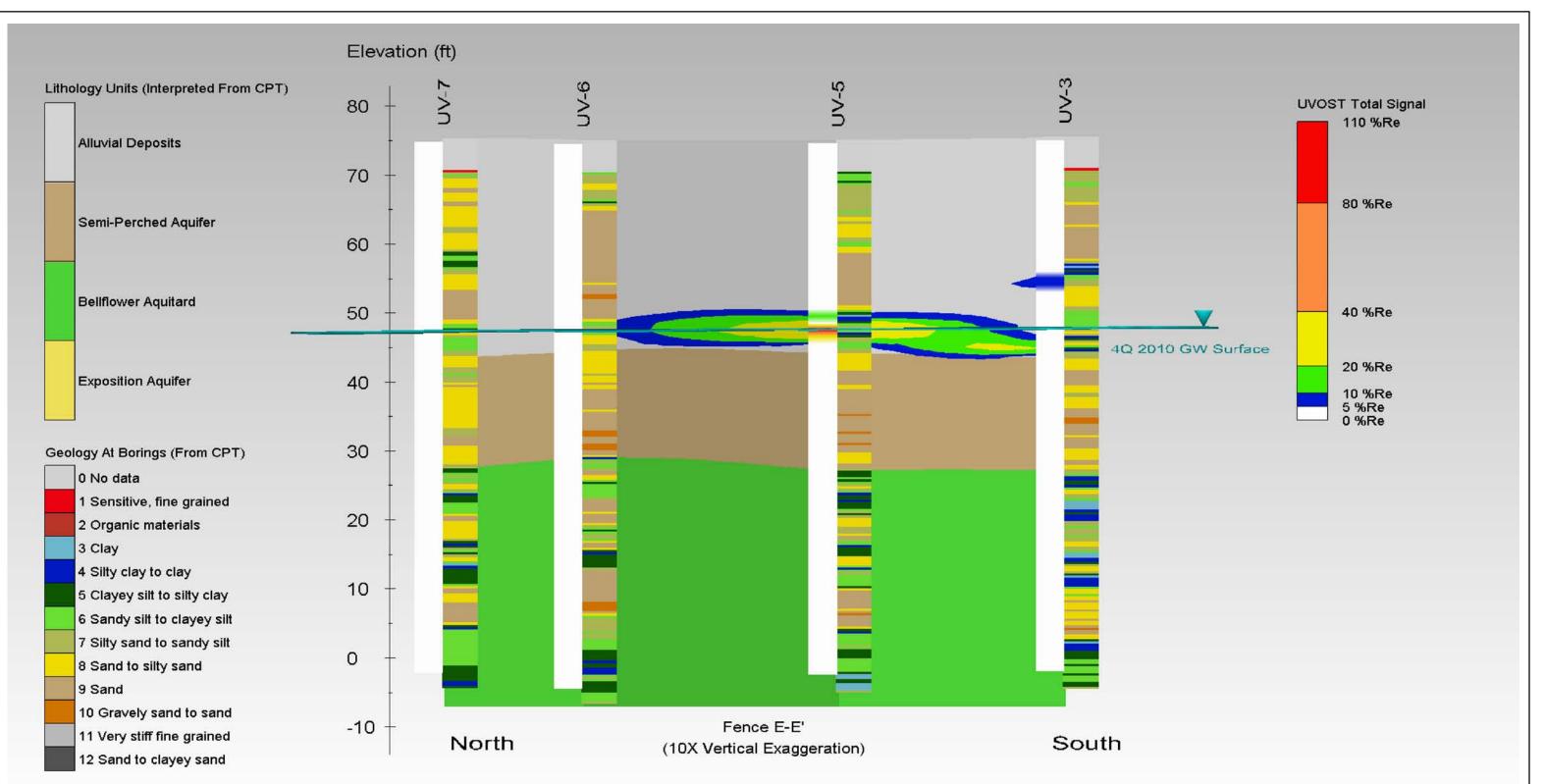

FIGURES

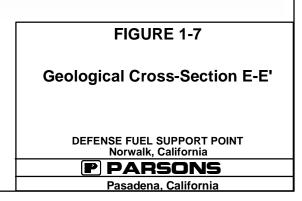


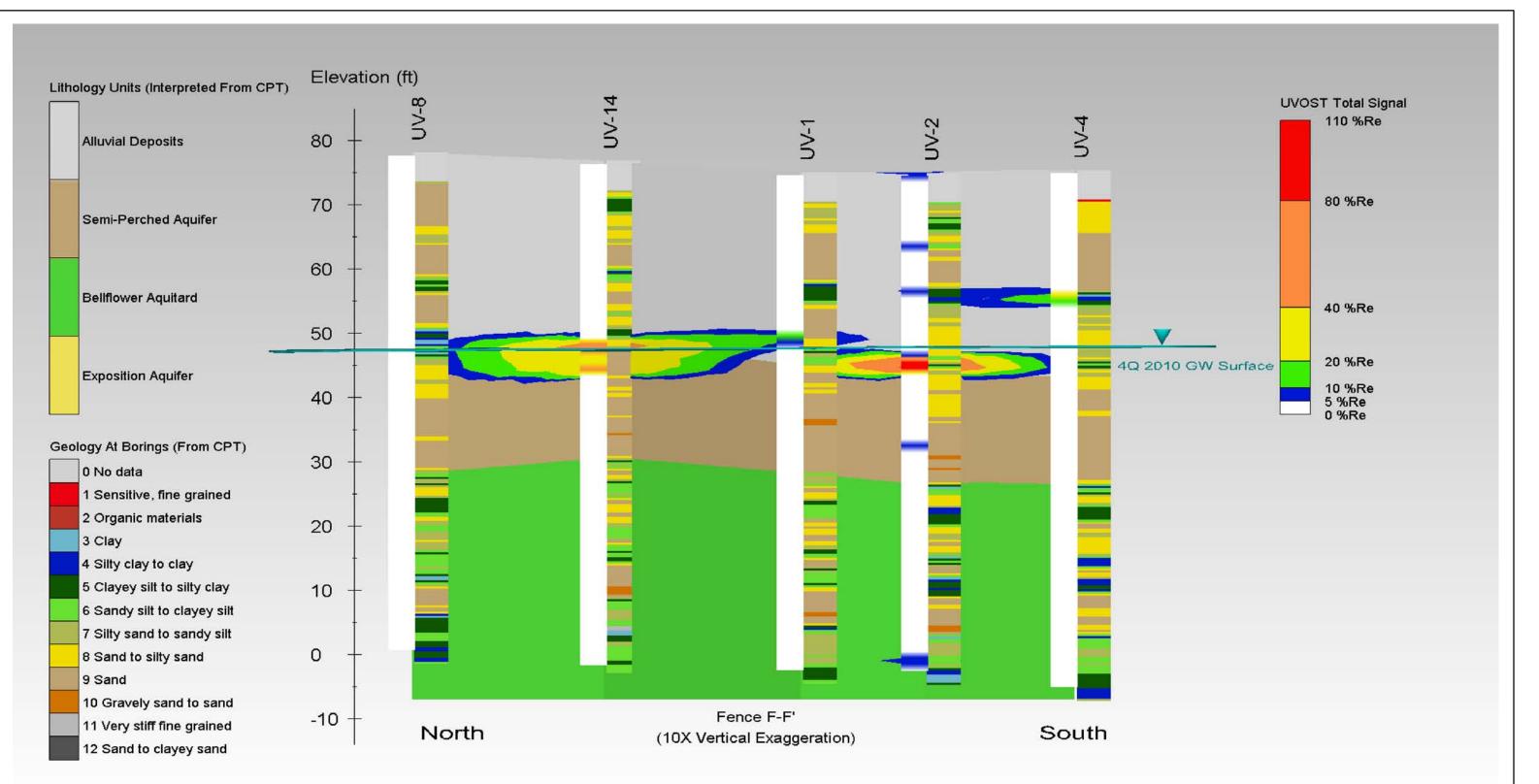


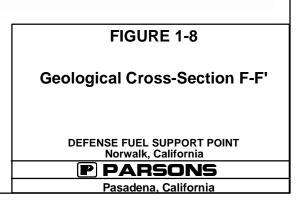


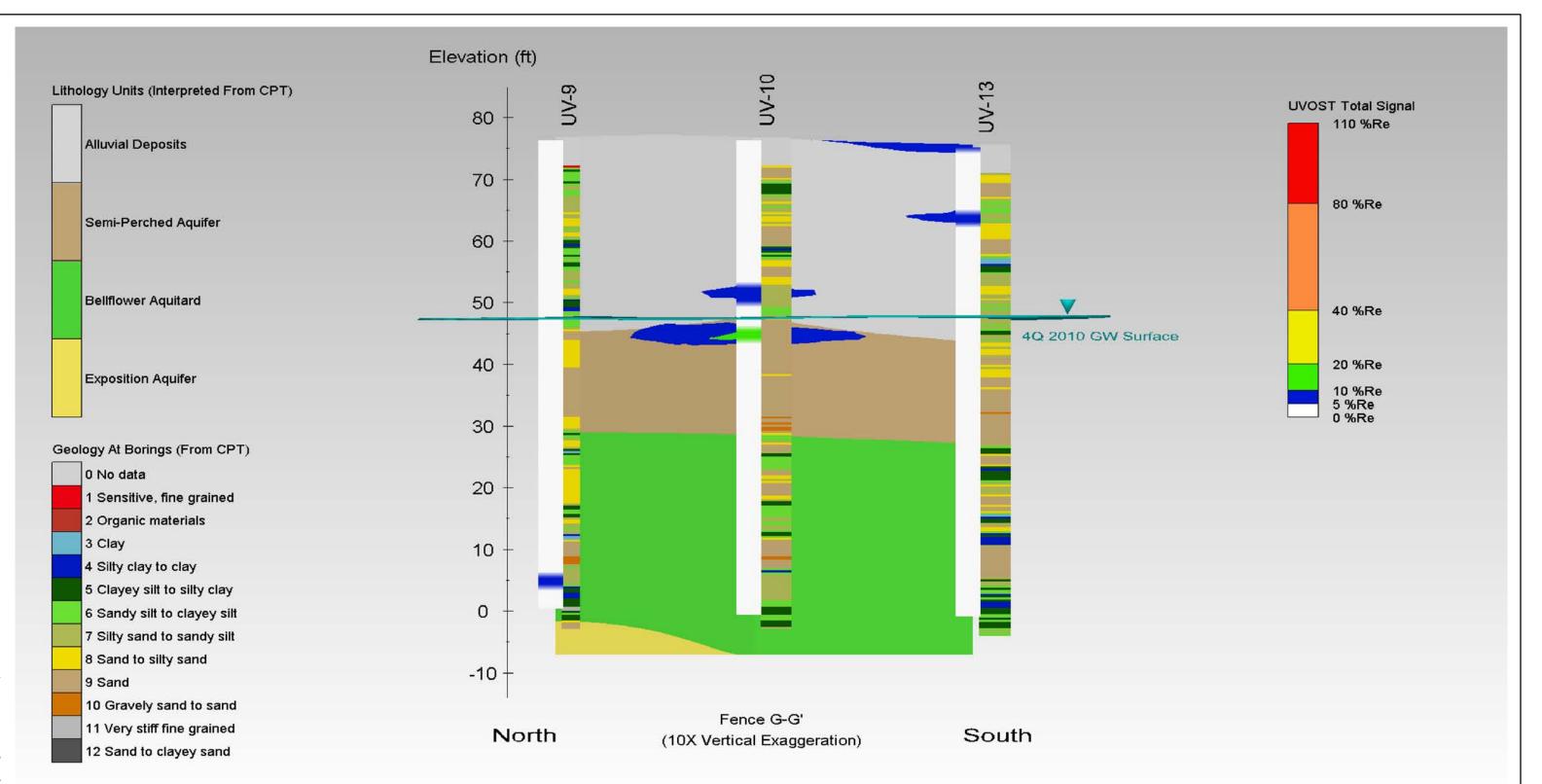


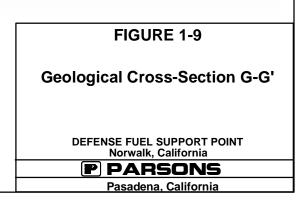




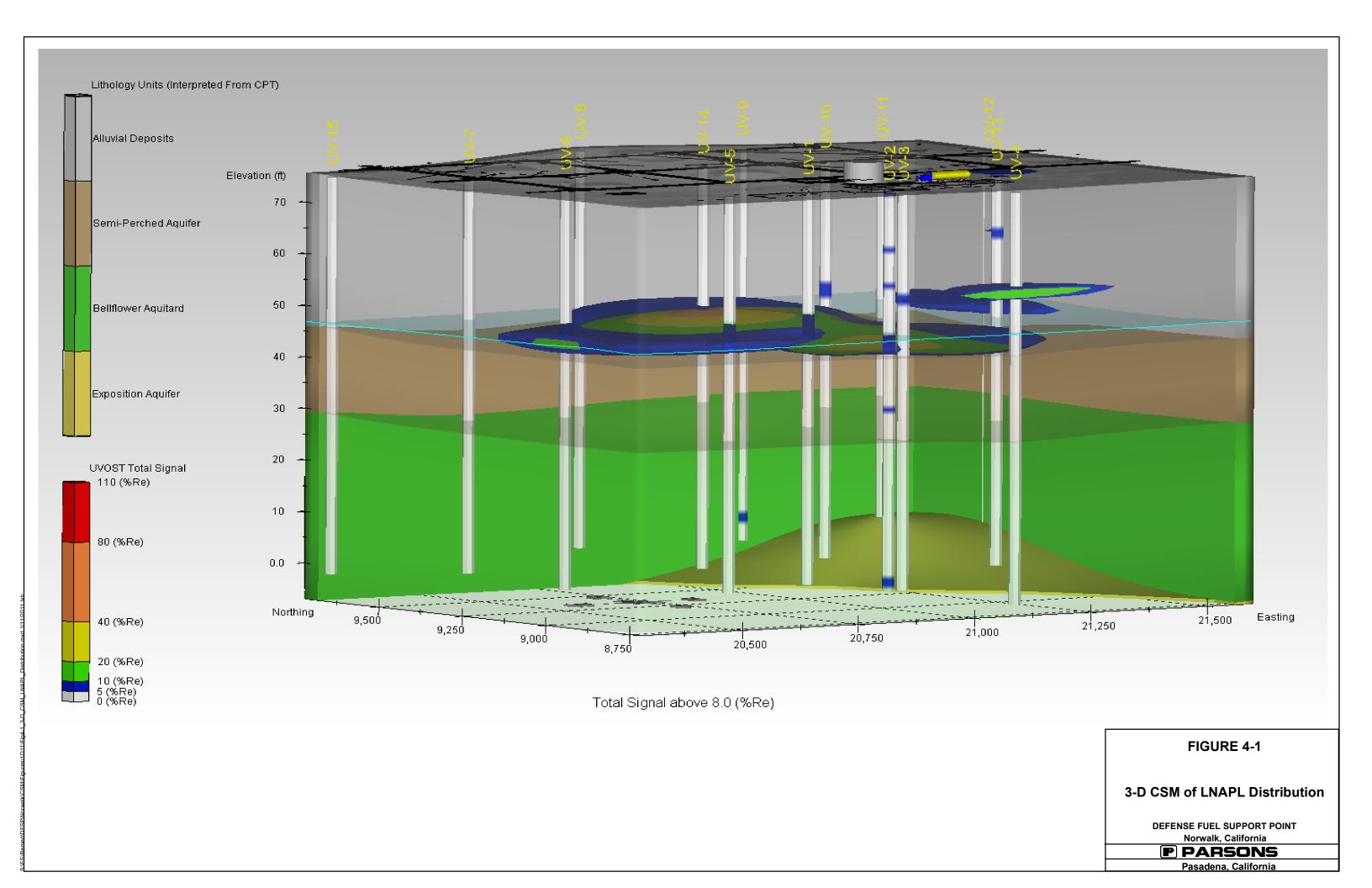


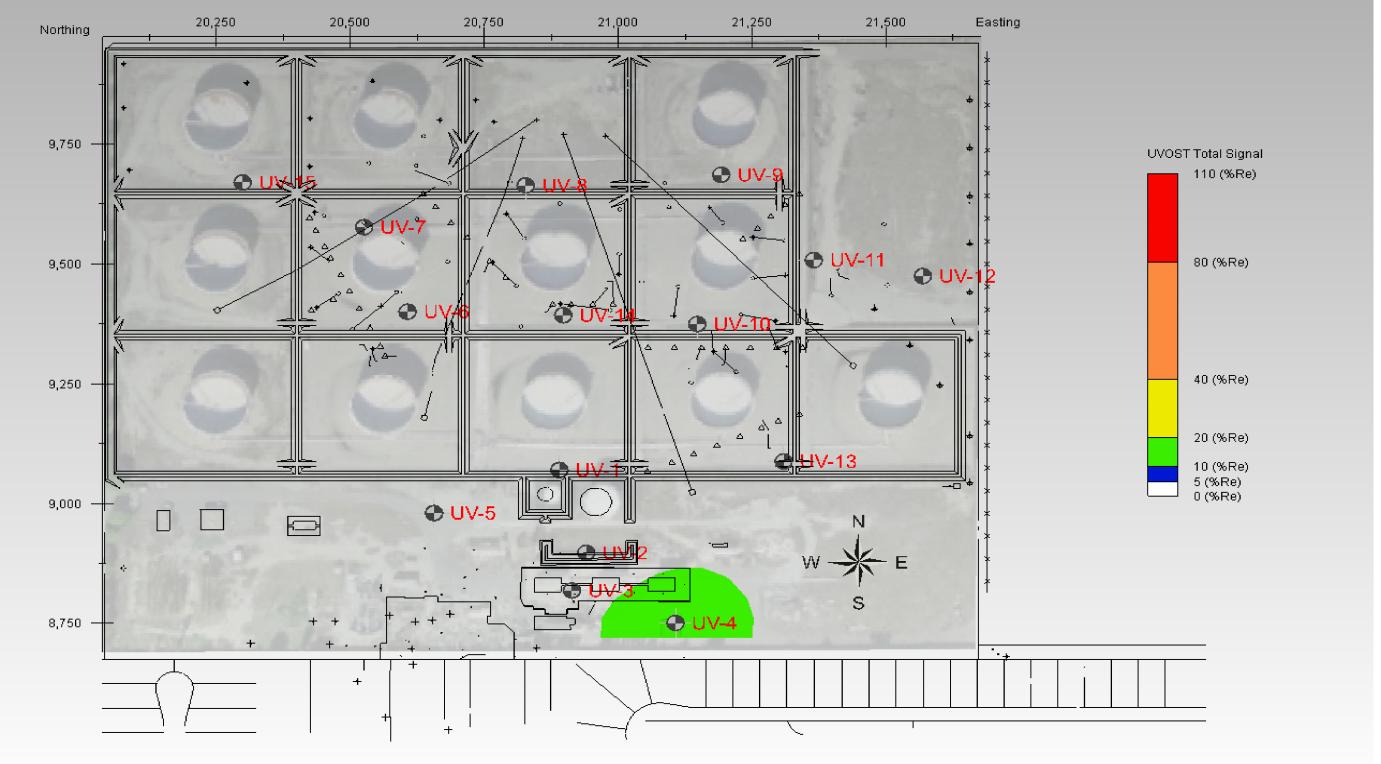

orwalk/CSM/Eigures\1011/Eig1-6_fence_d-d_with_geo_and_uvost_scr

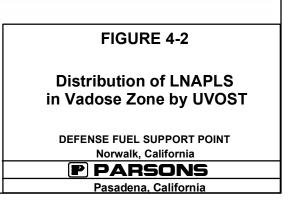


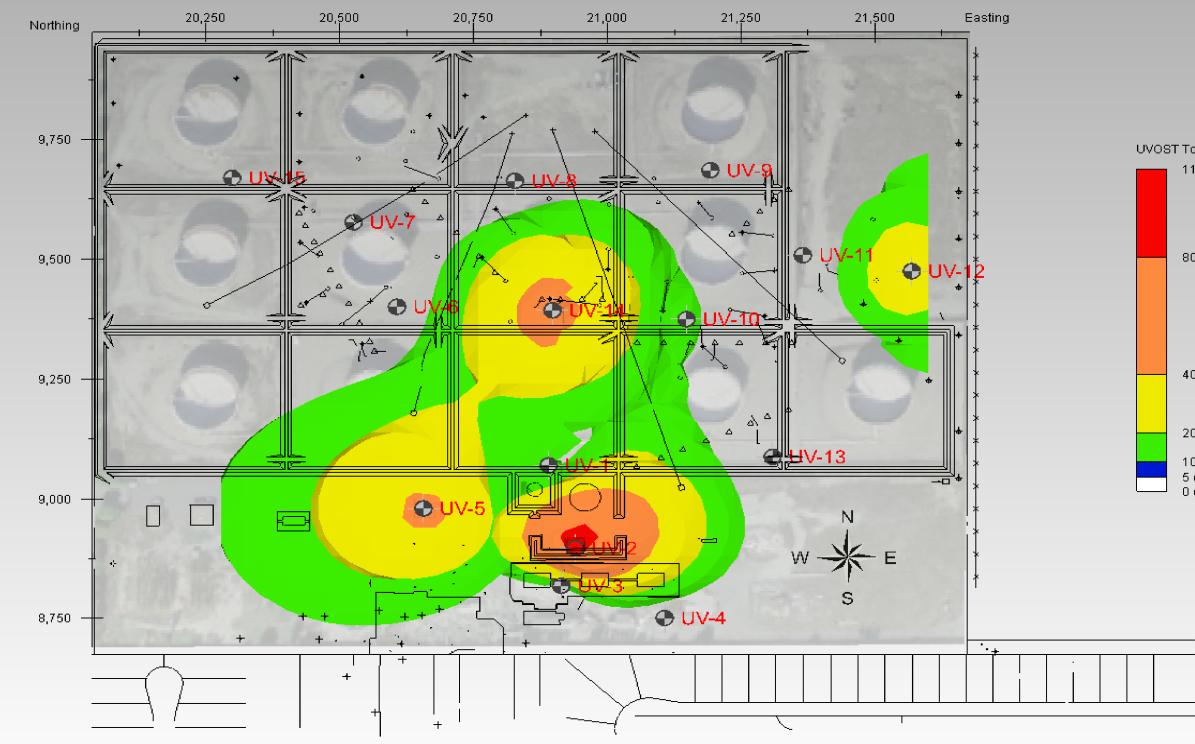


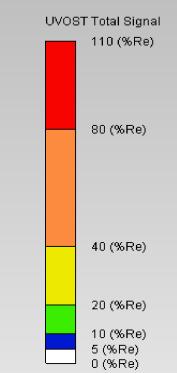


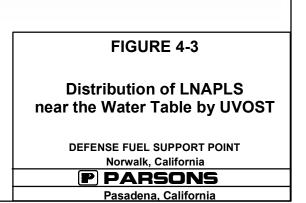


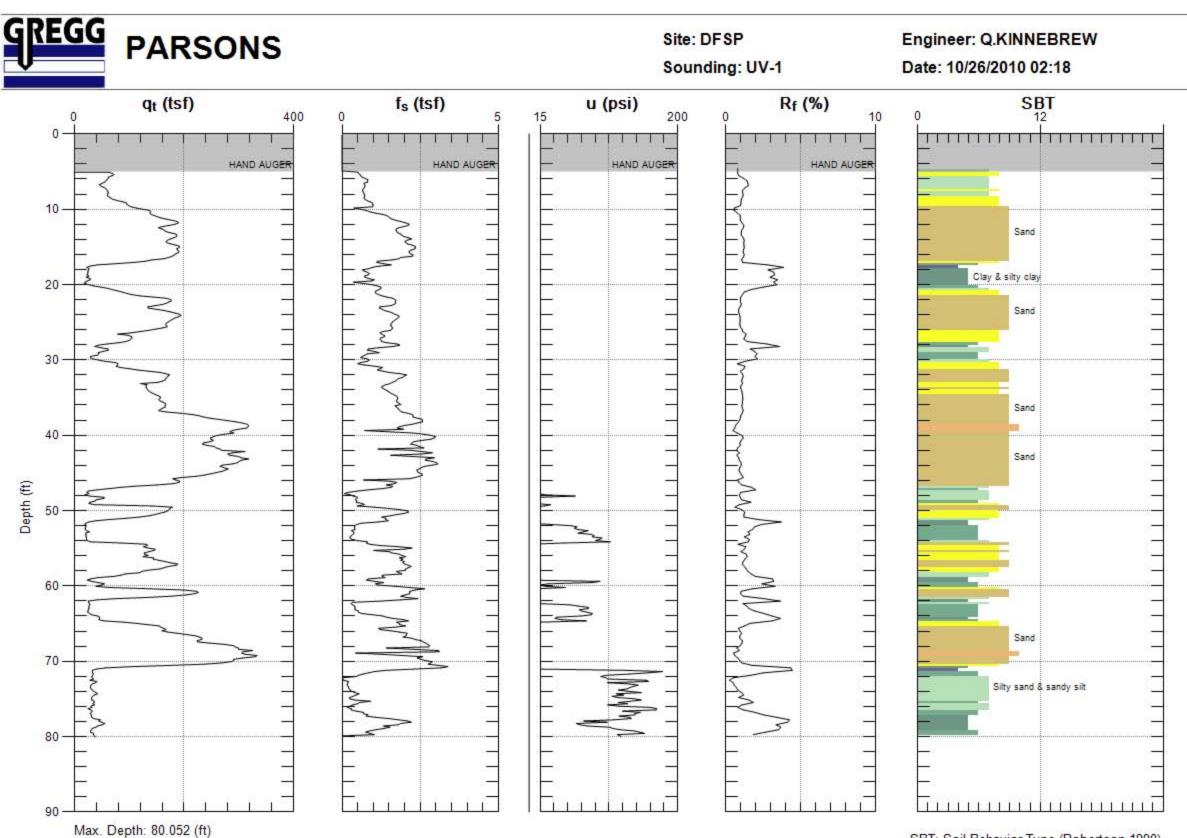


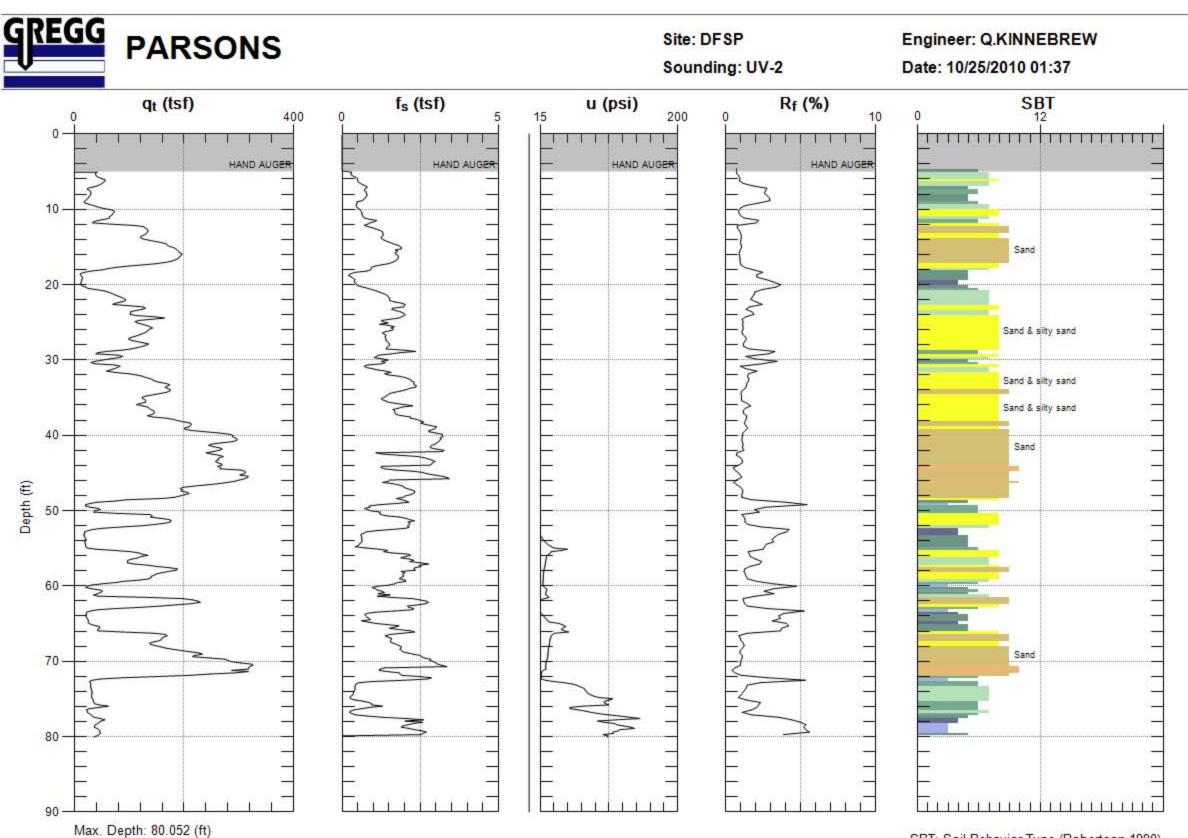


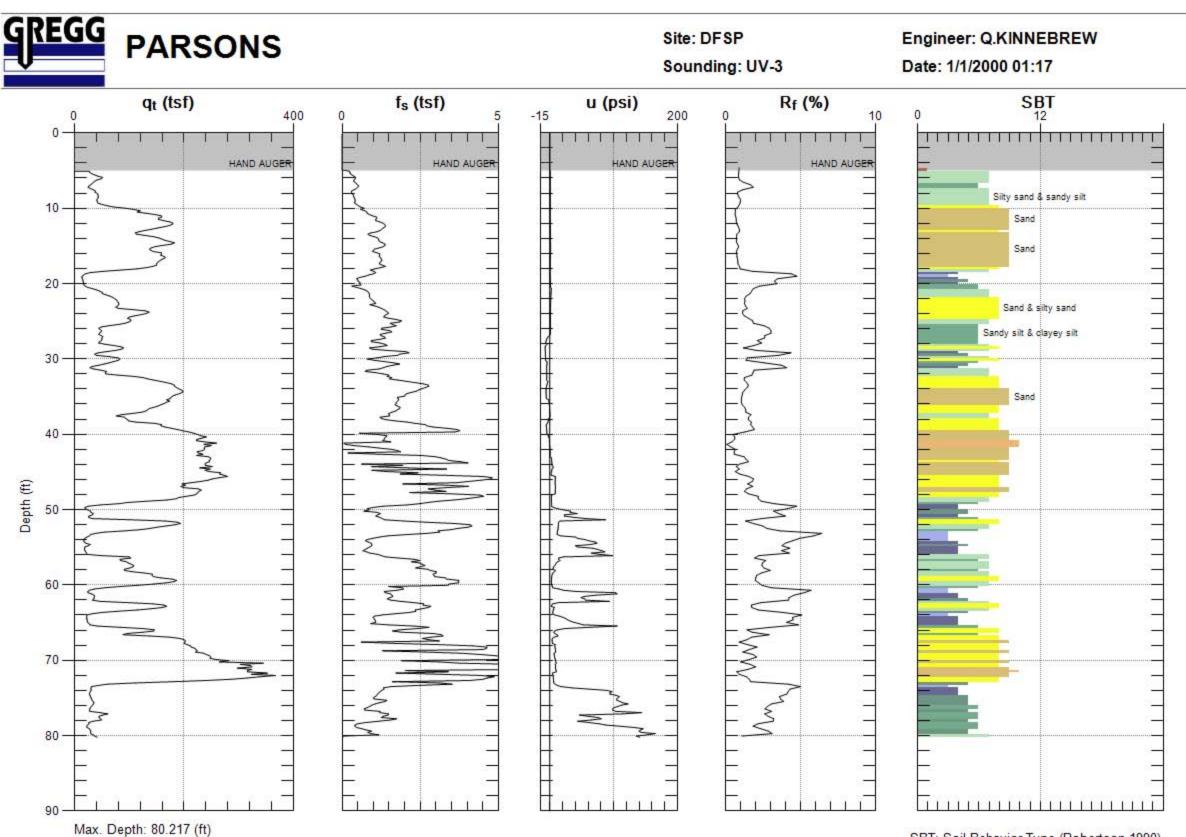


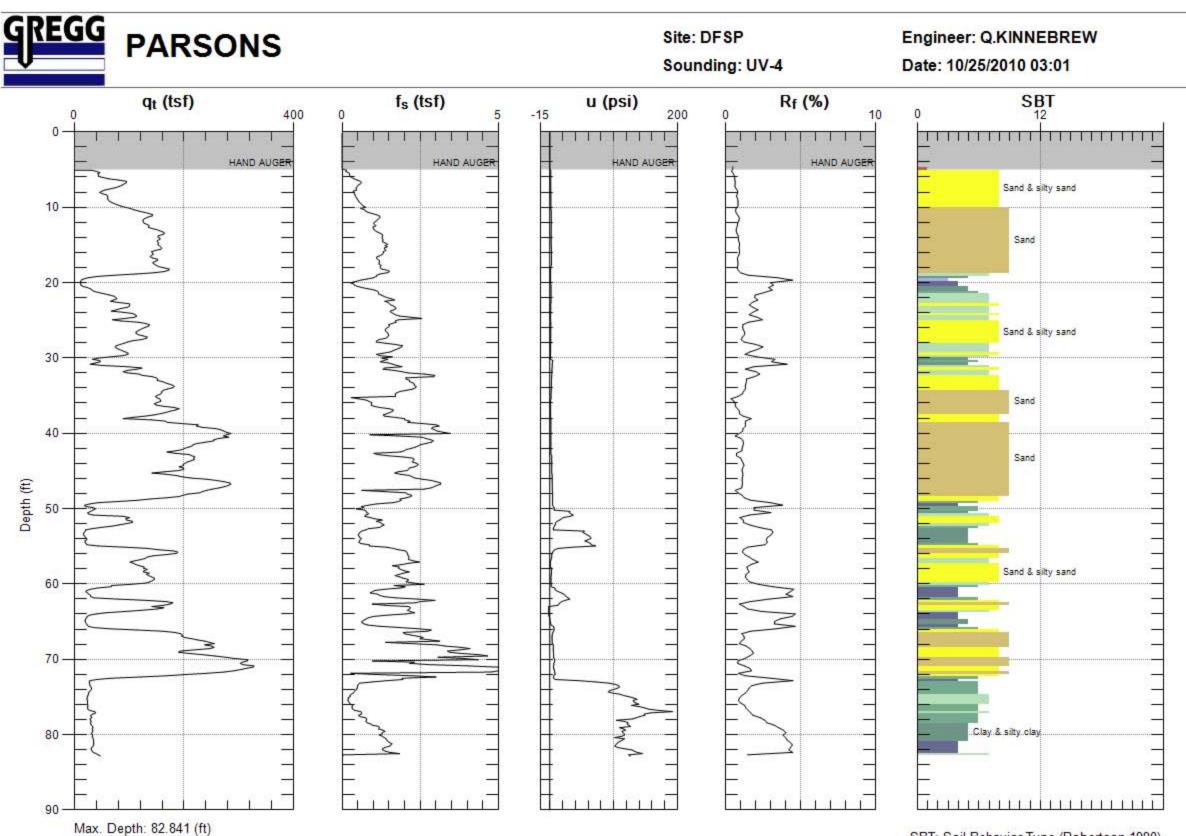


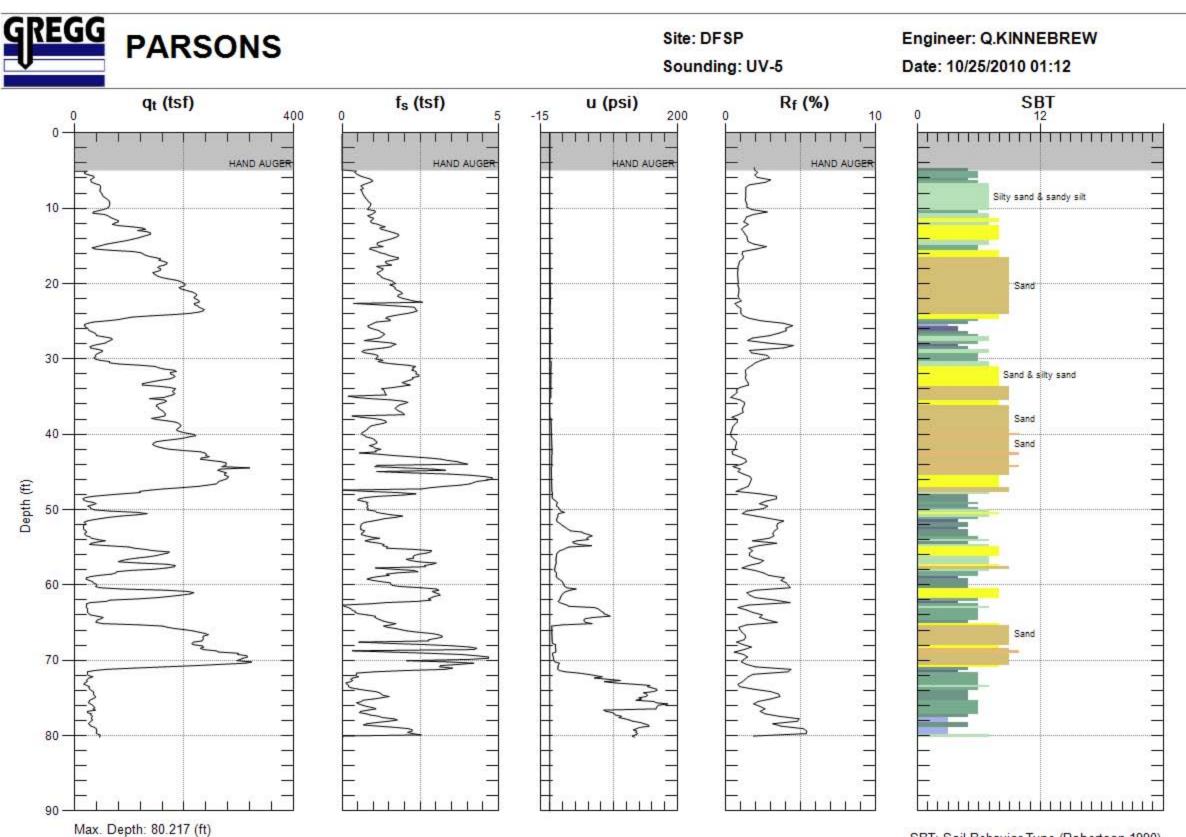

Total Signal above 10 (%Re)

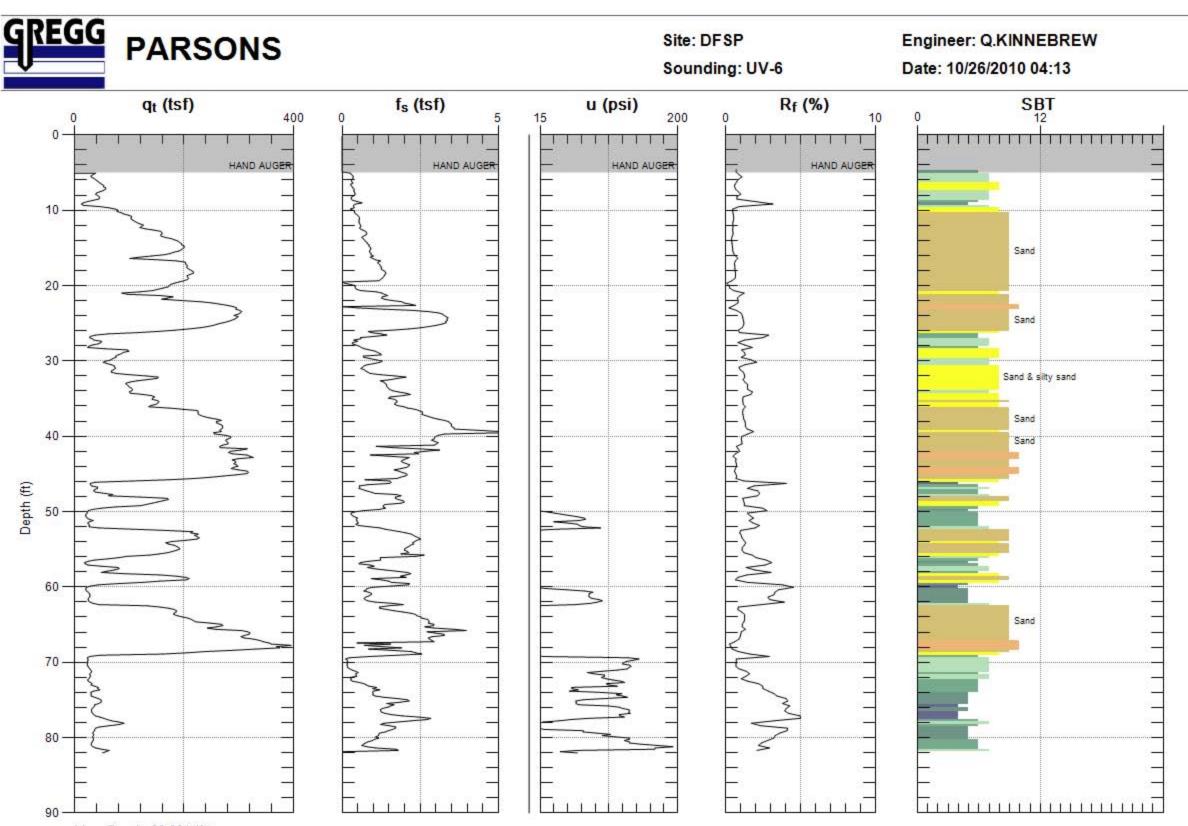

Total Signal above 10 (%Re)

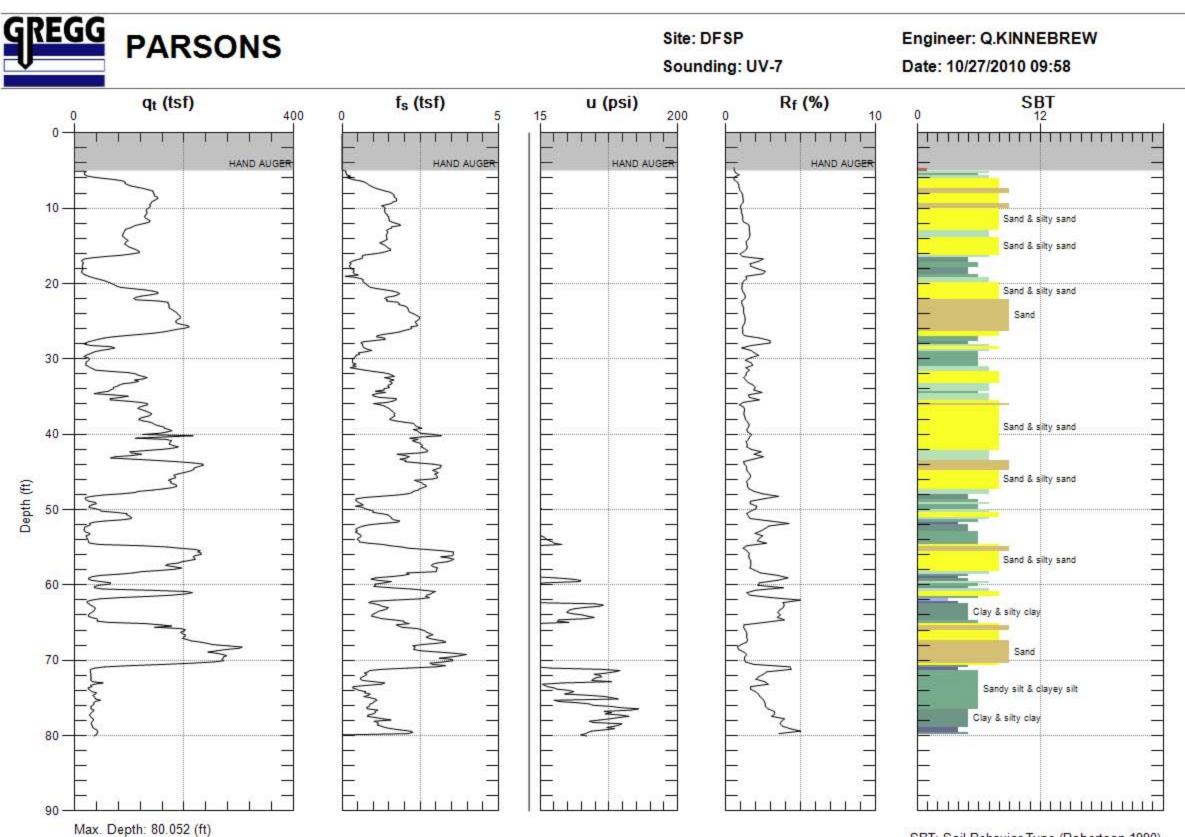


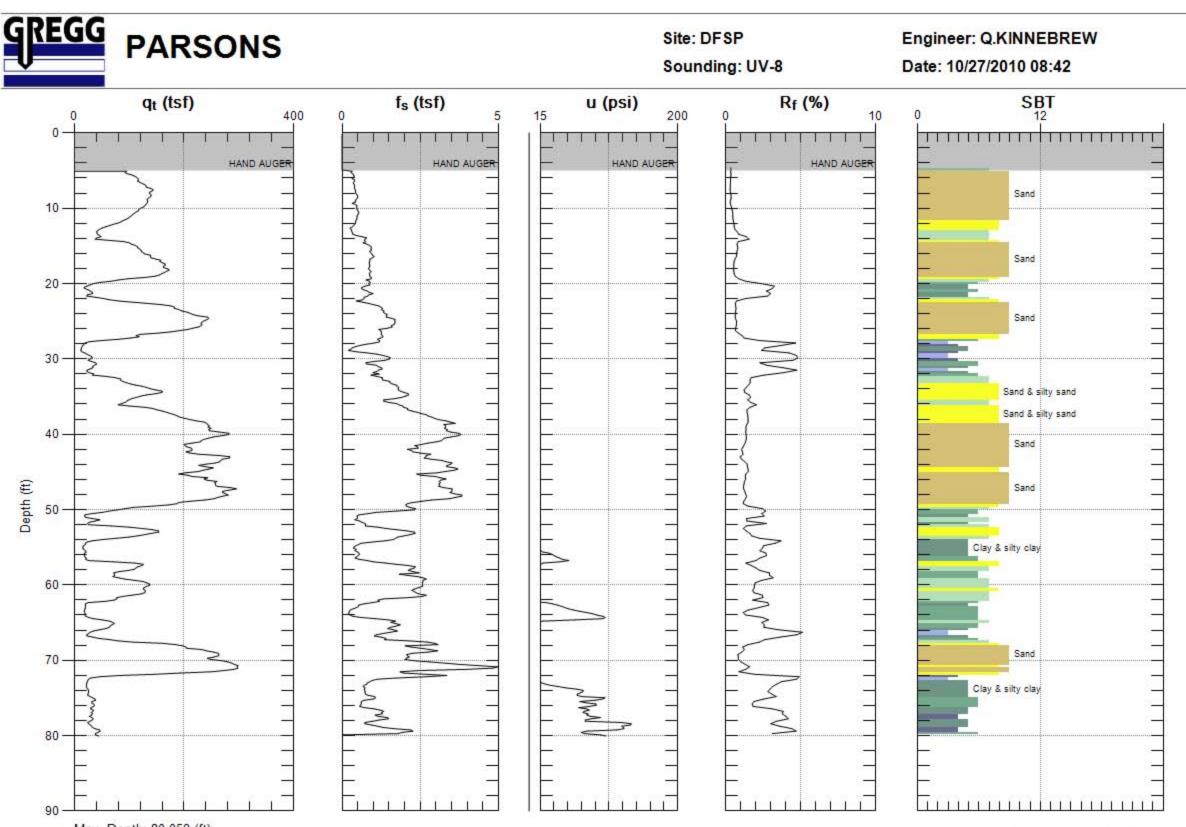


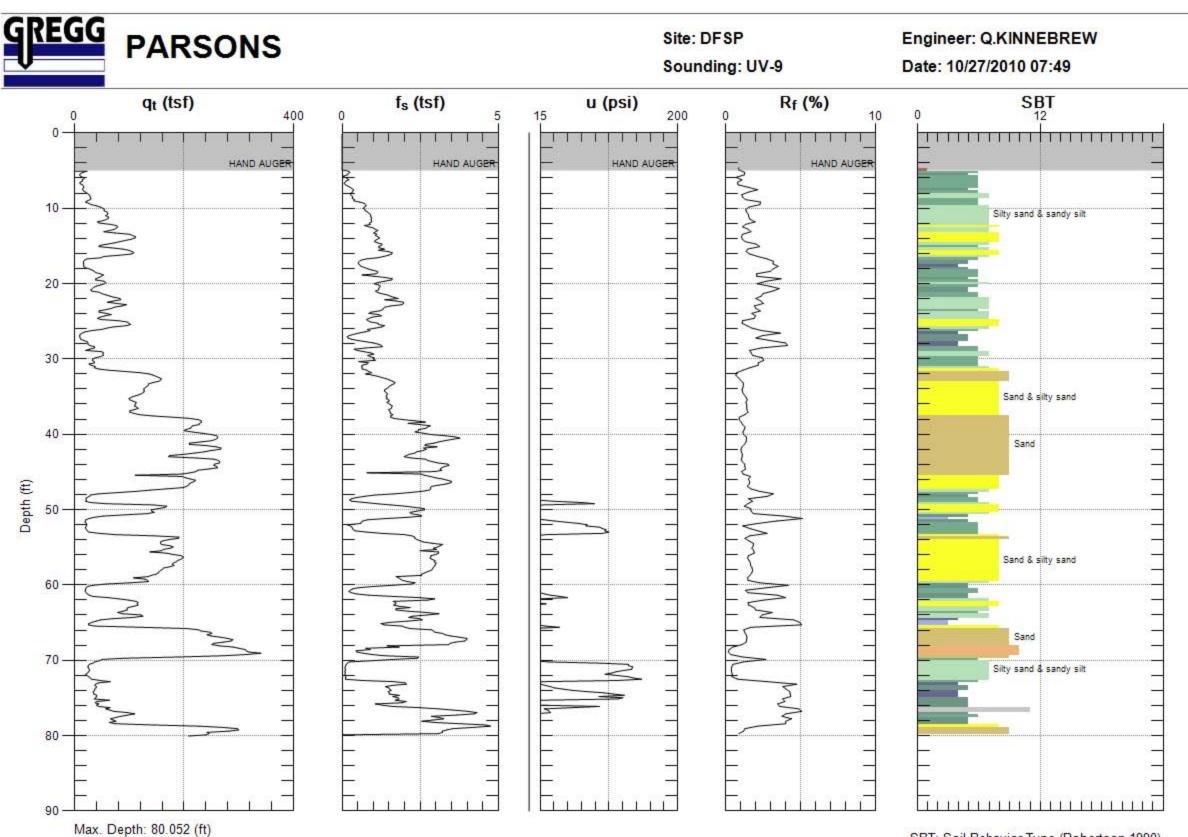

APPENDIX A

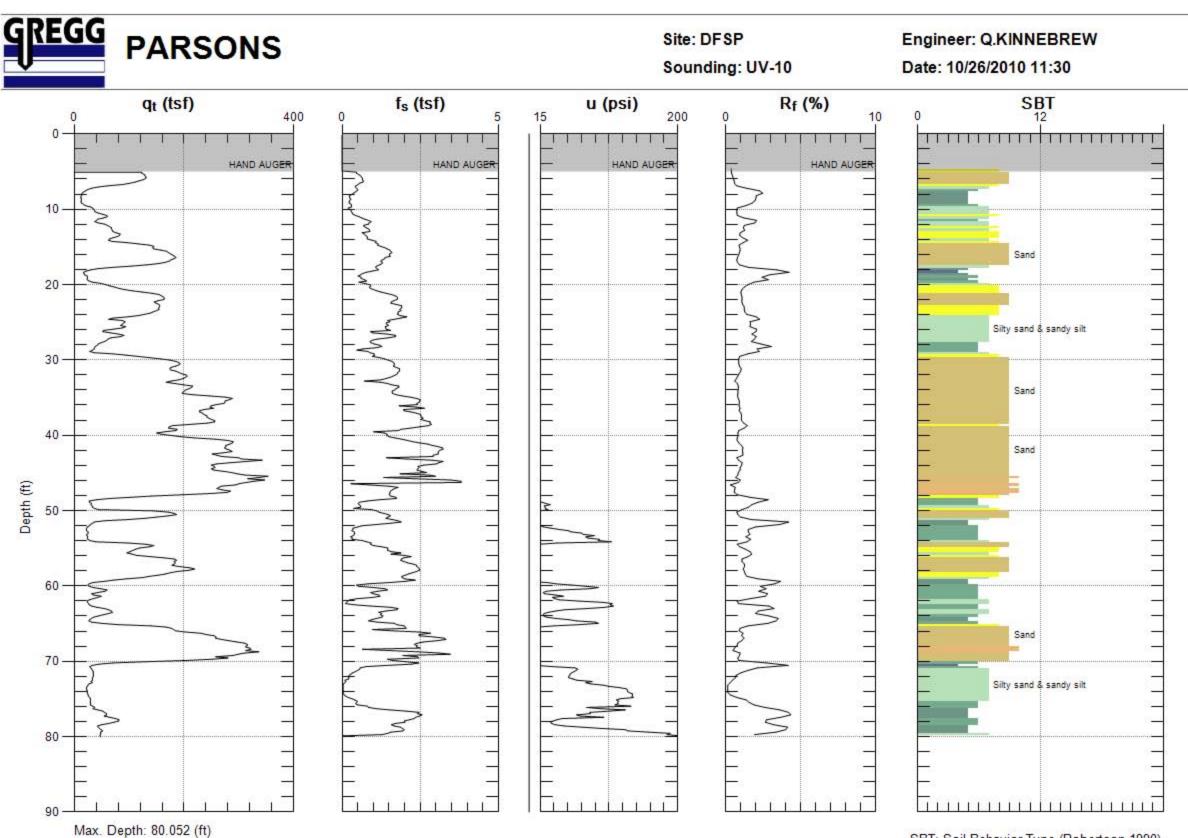

CONE PENETRATION TEST DATA LOGS

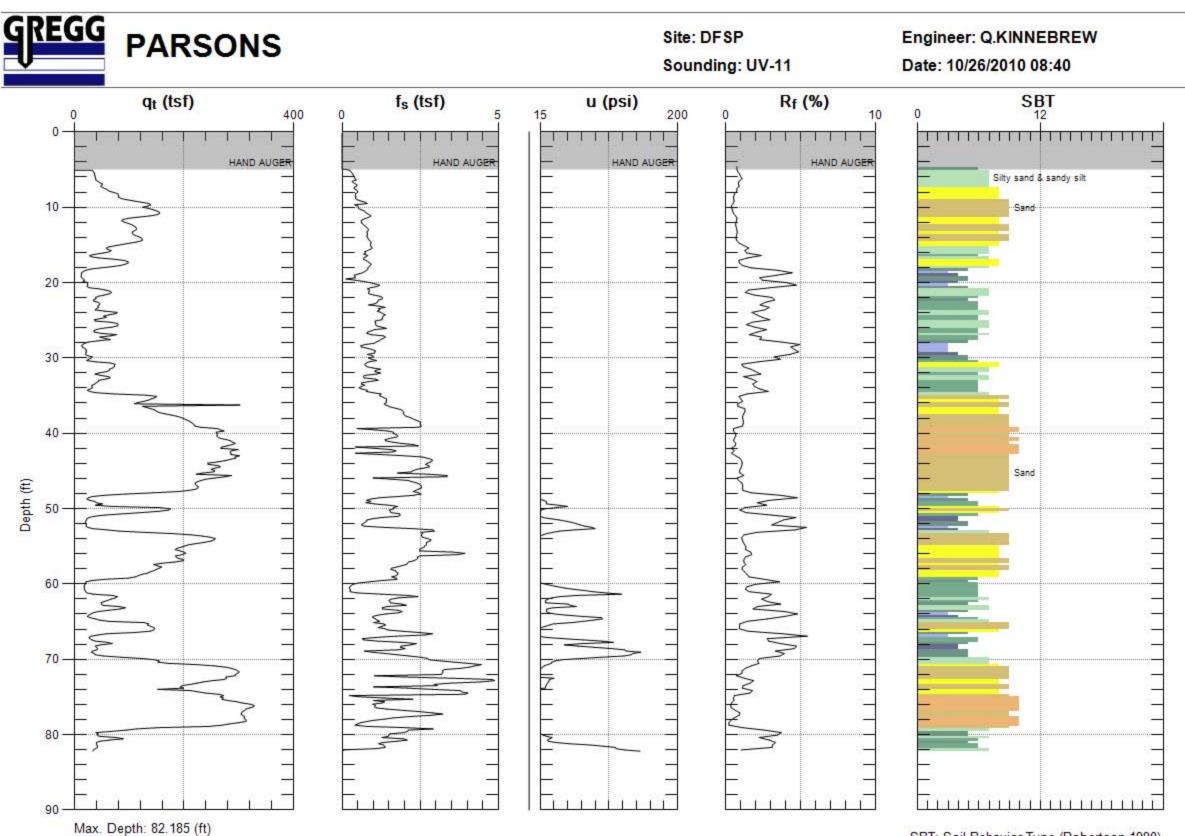


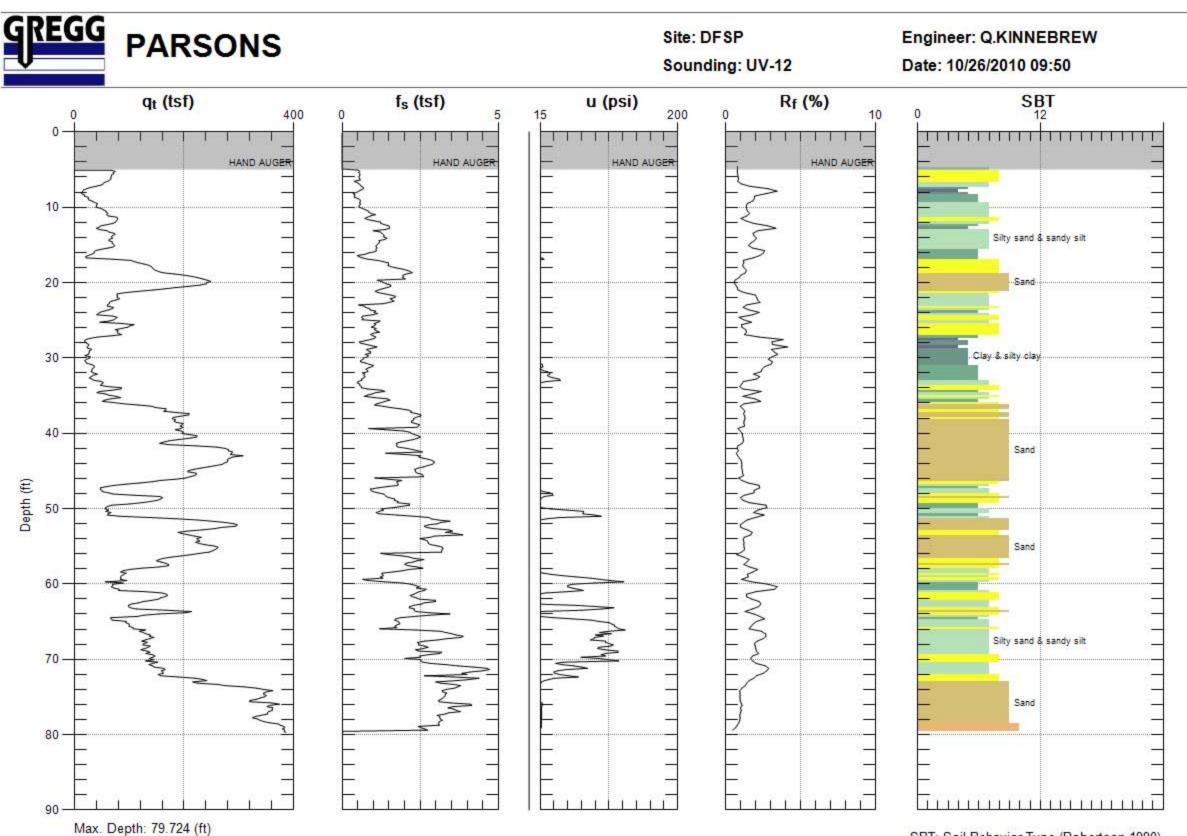


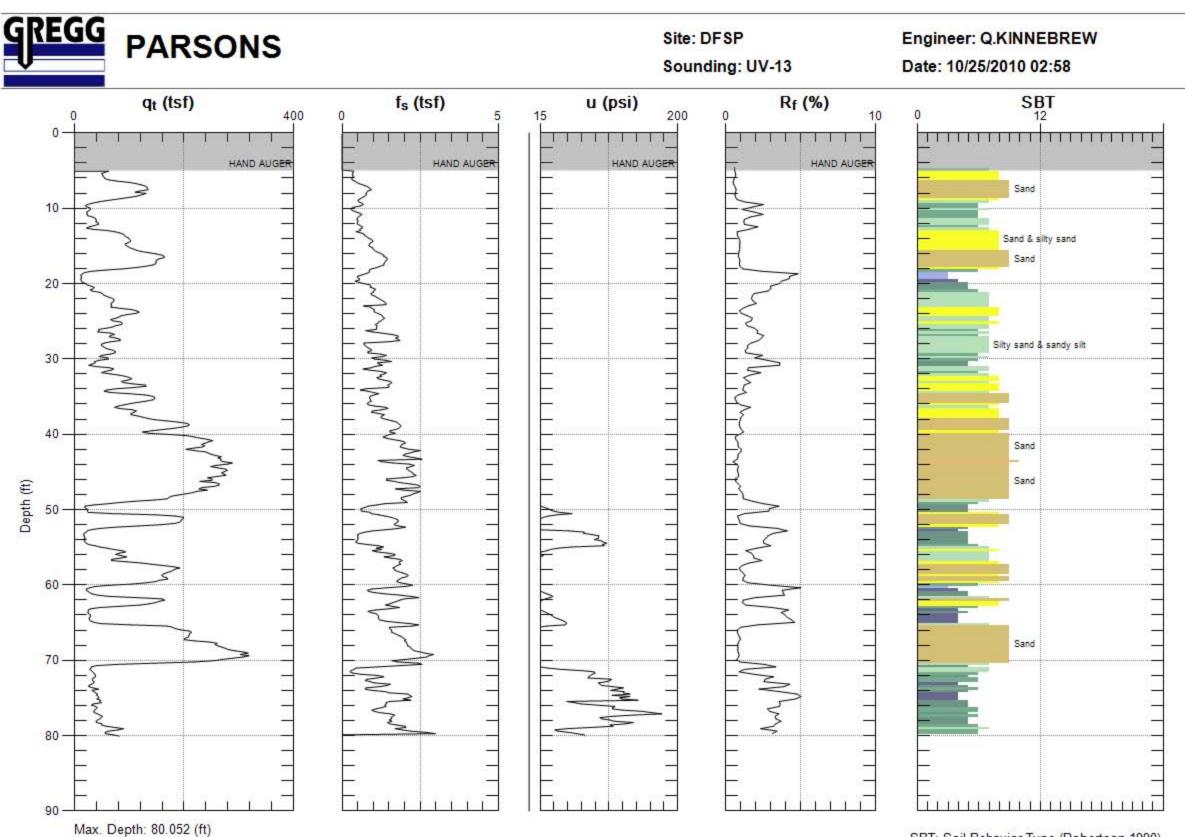


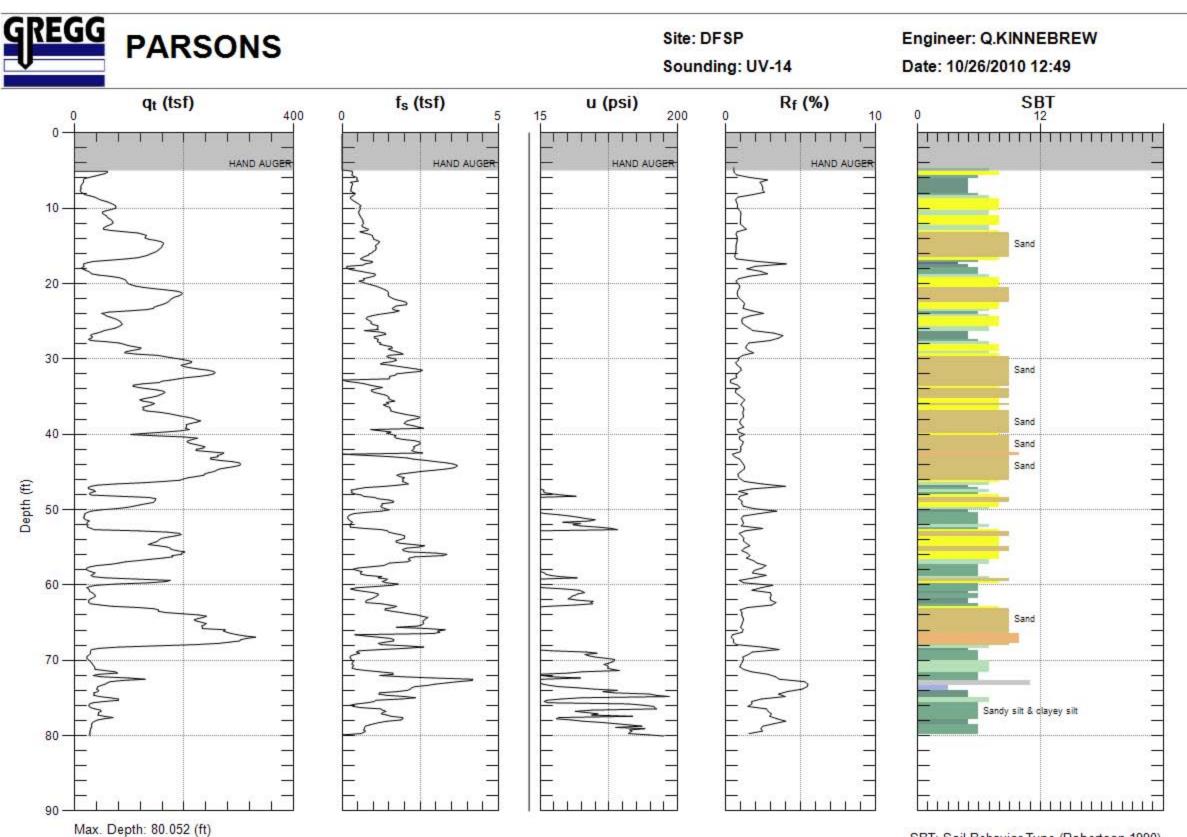

Max. Depth: 82.021 (ft) Avg. Interval: 0.328 (ft)

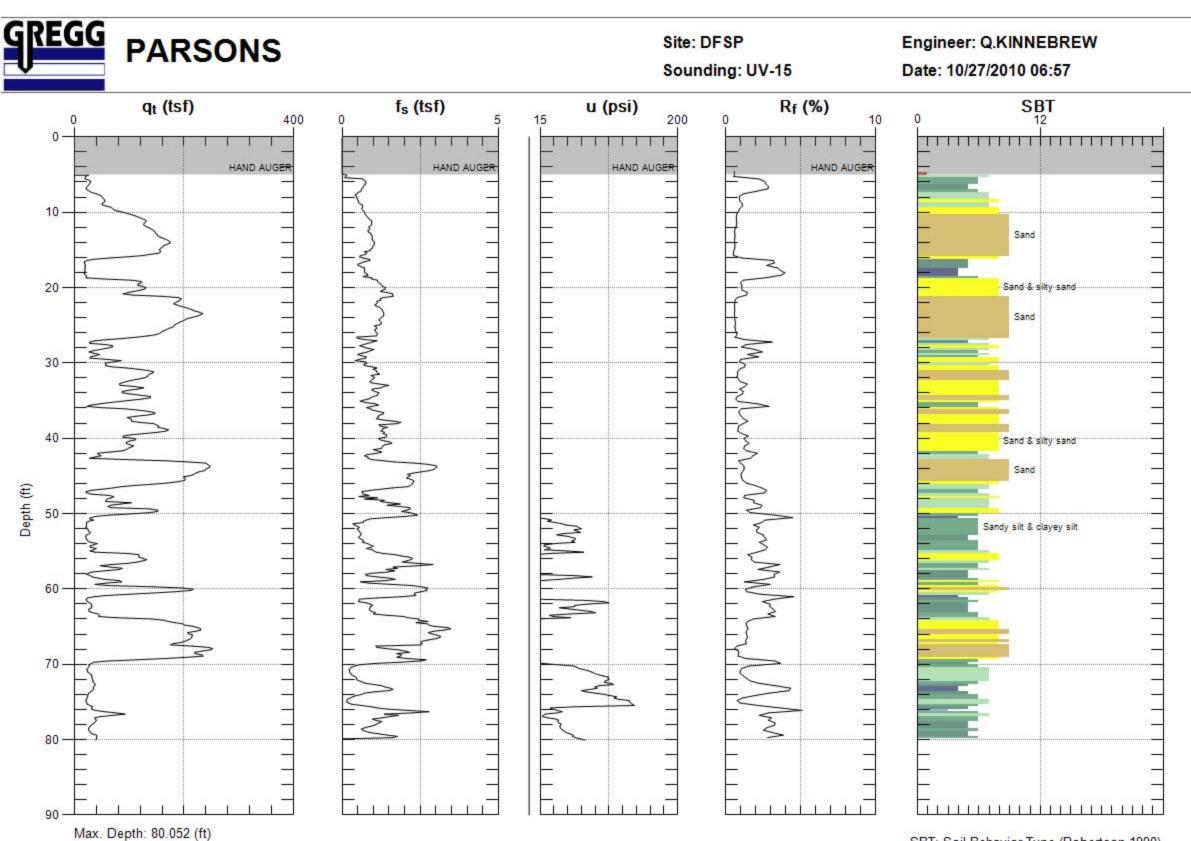


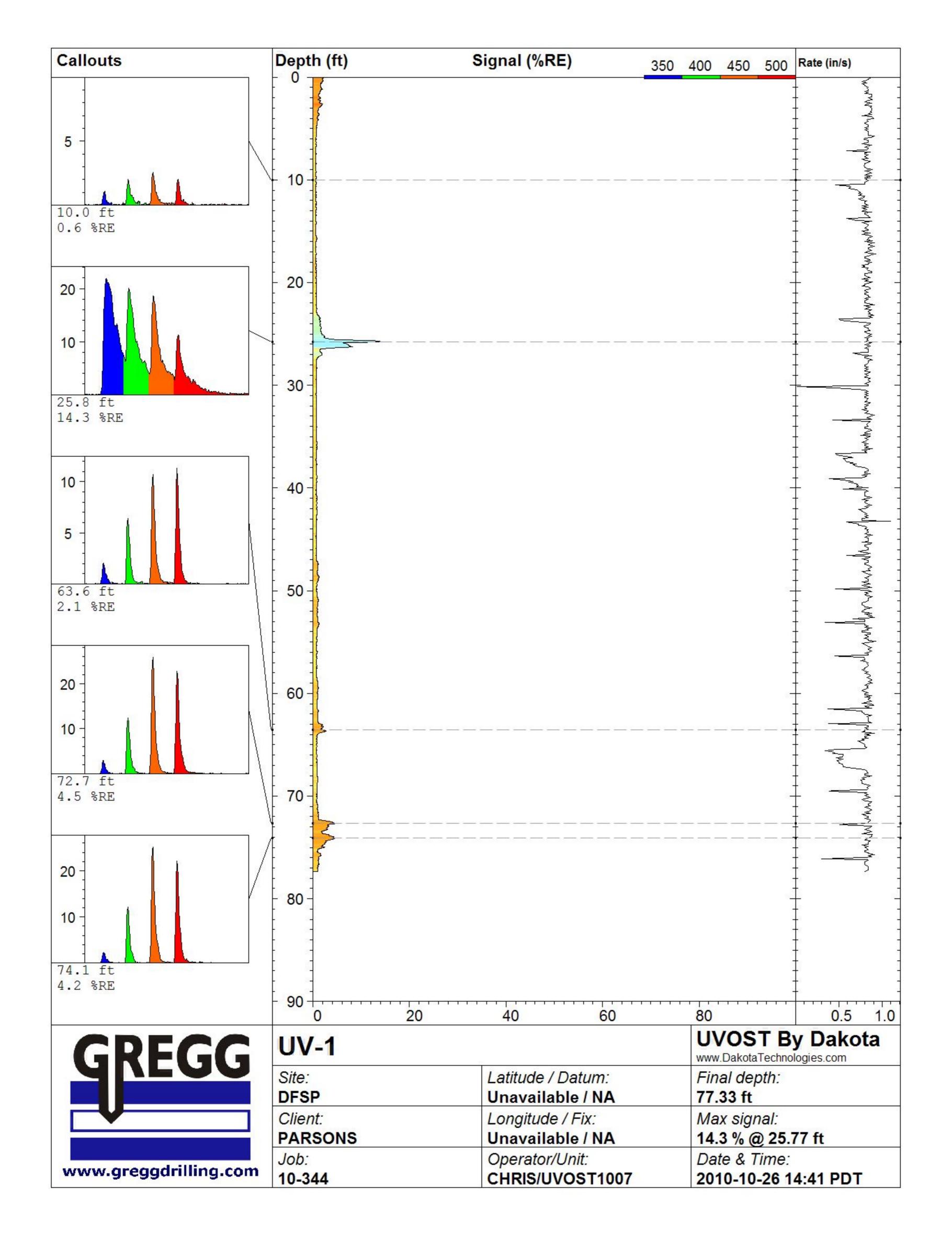

Avg. Interval: 0.328 (ft)

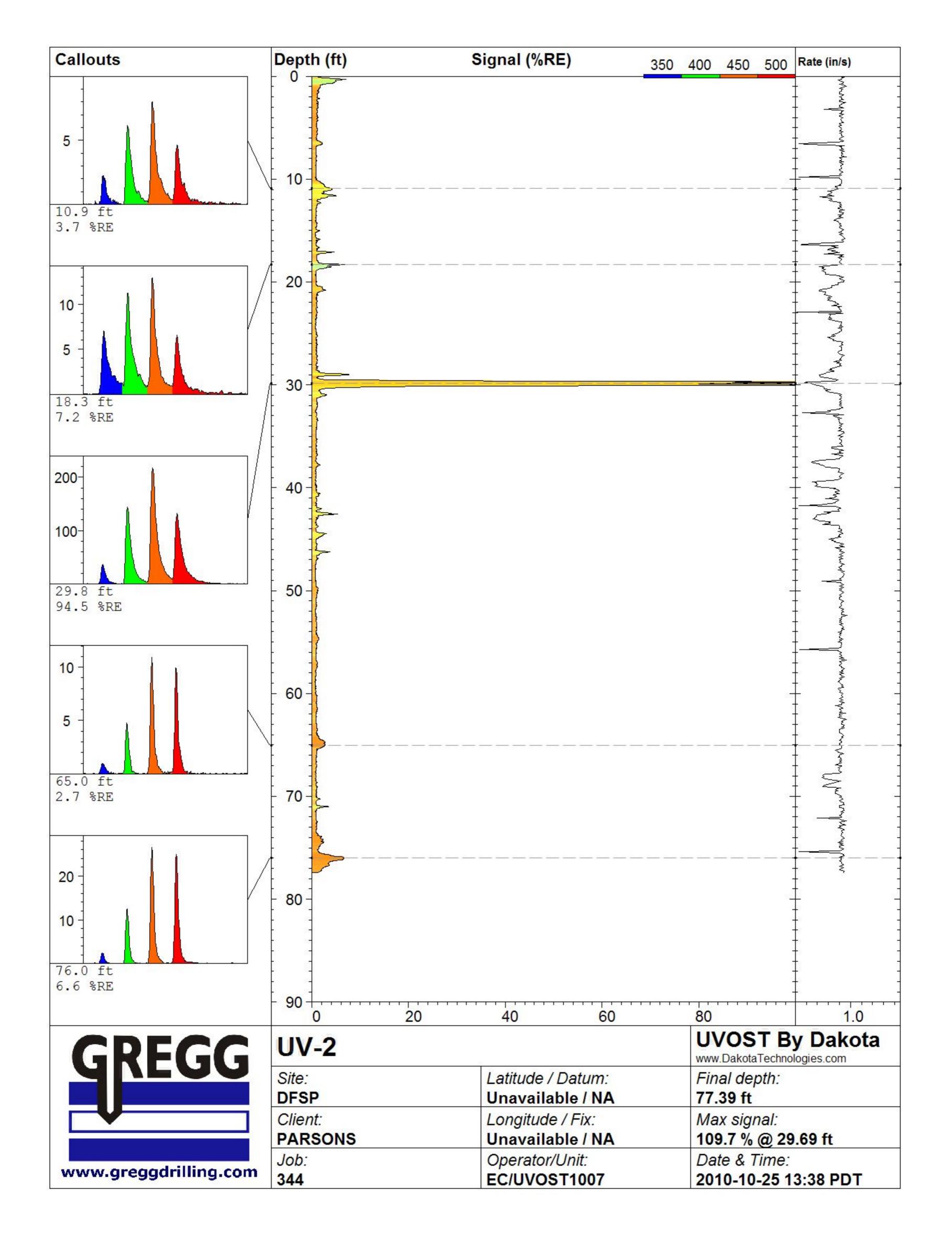


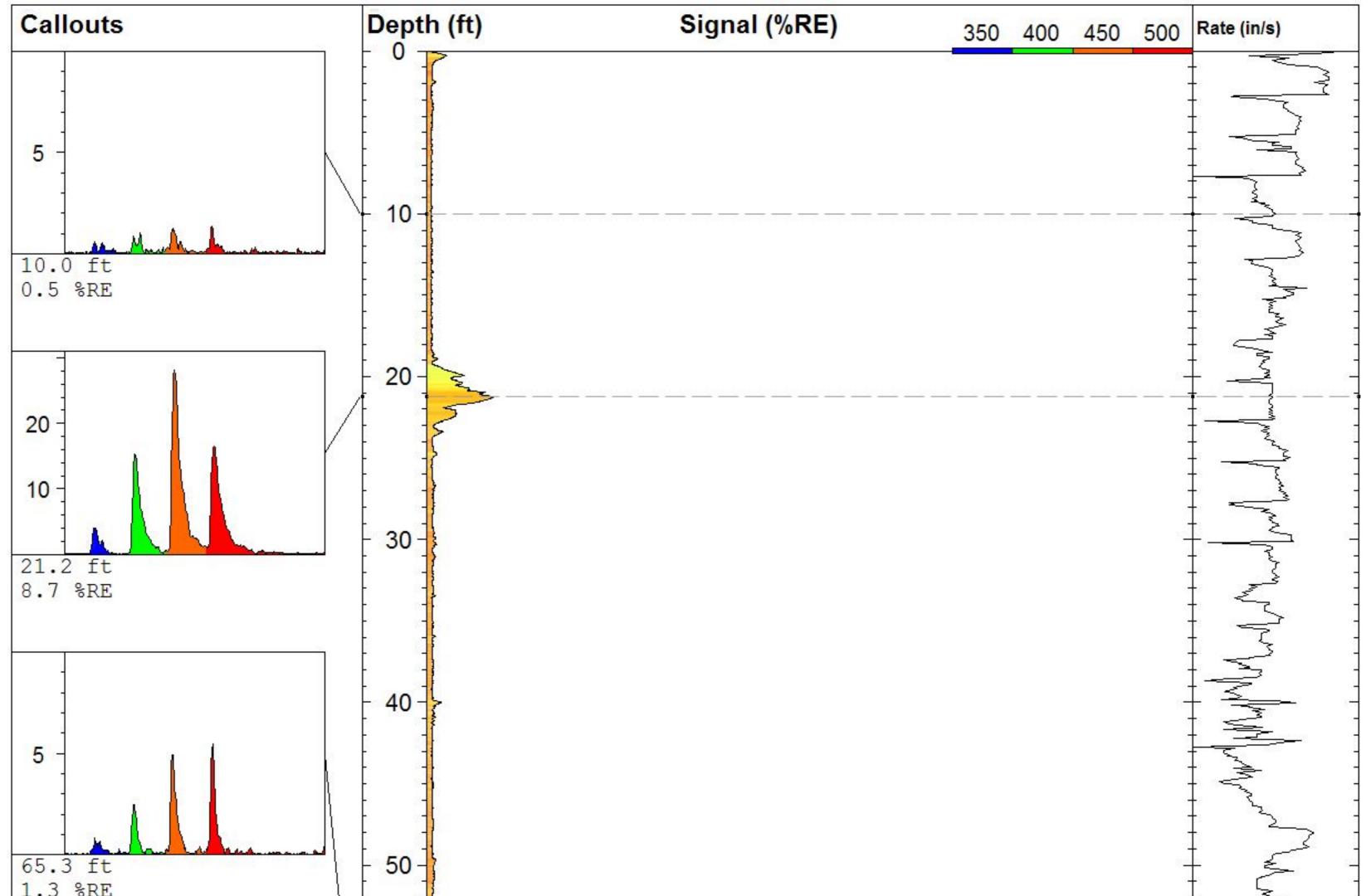

Max. Depth: 80.052 (ft) Avg. Interval: 0.328 (ft)



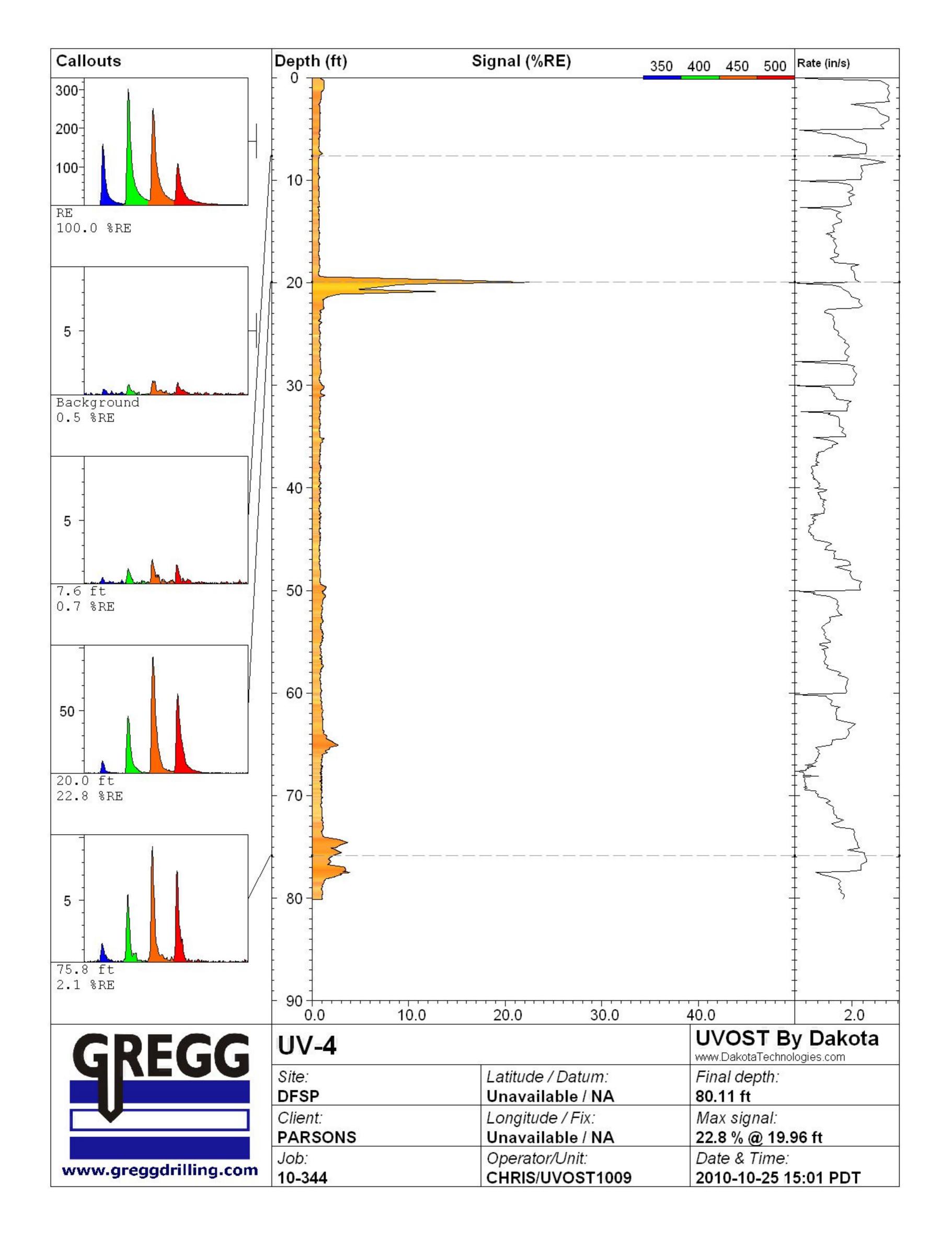


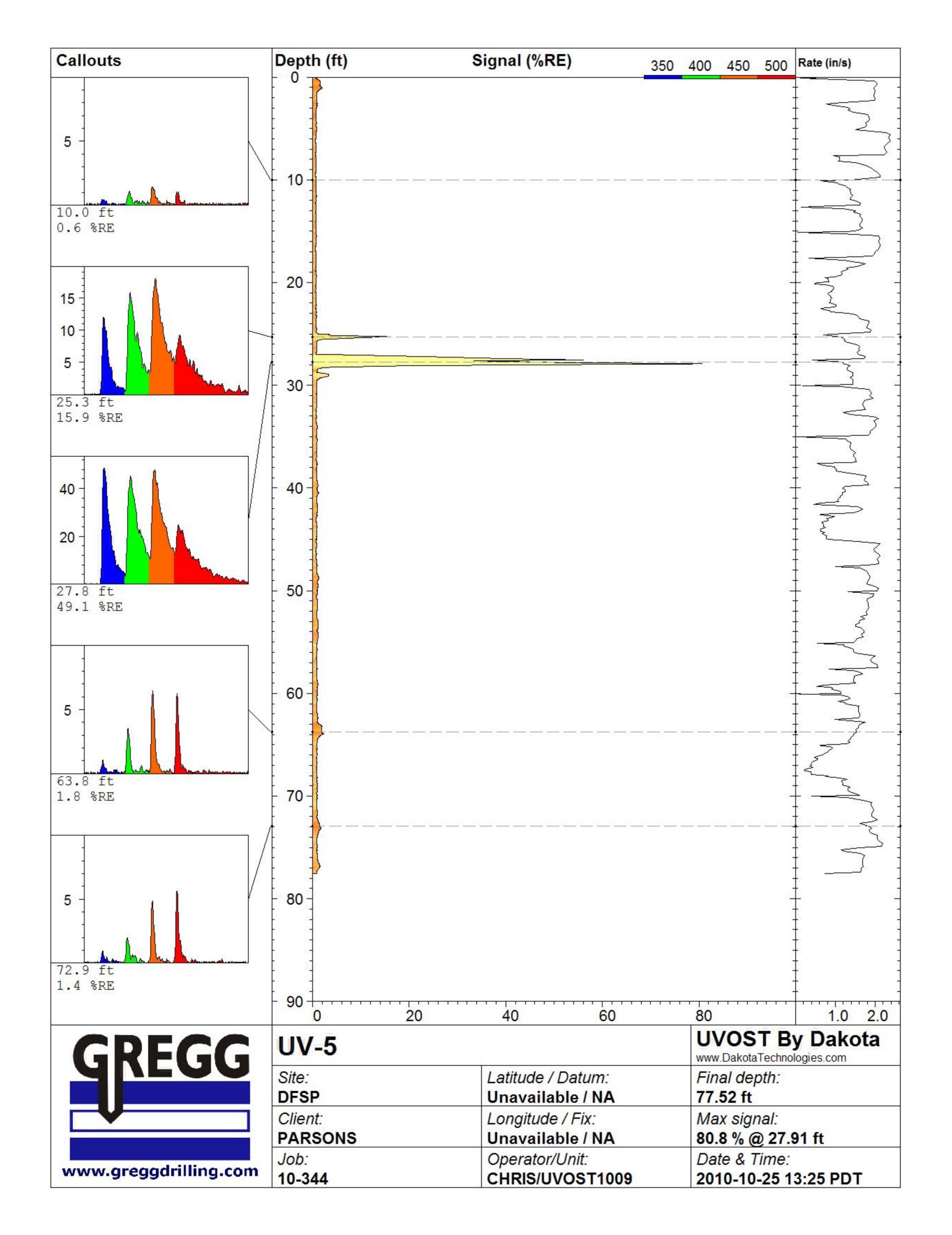

Avg. Interval: 0.328 (ft)

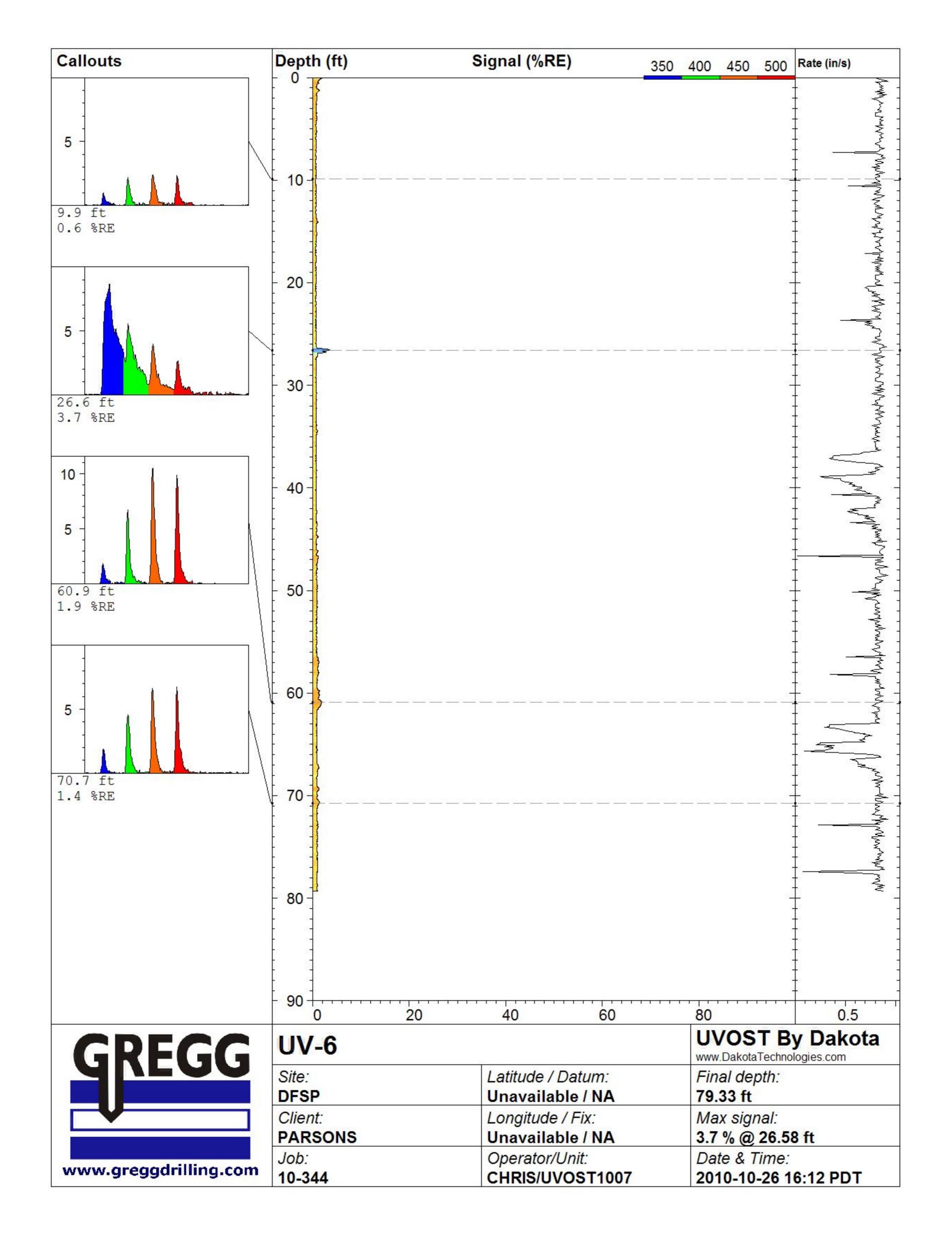


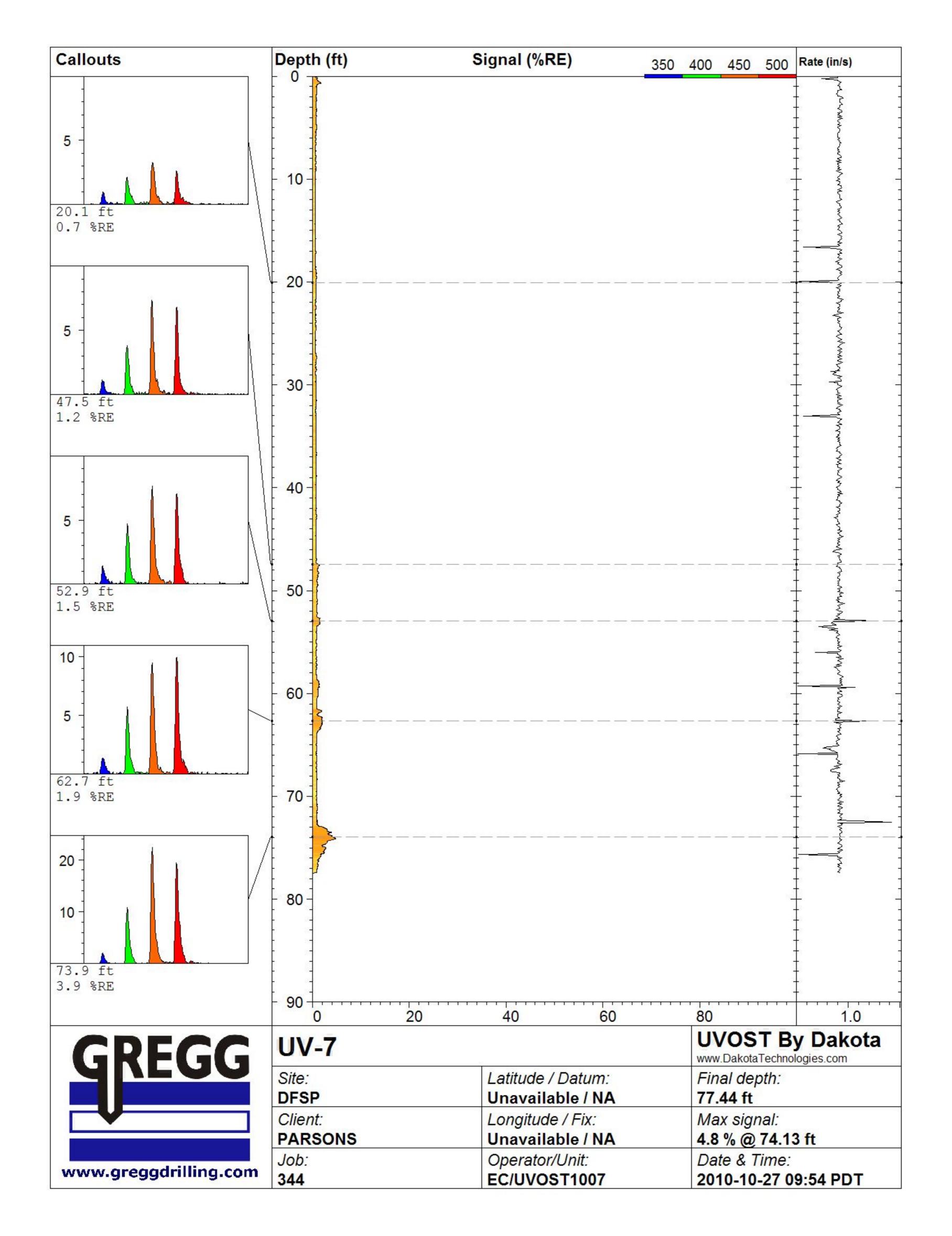


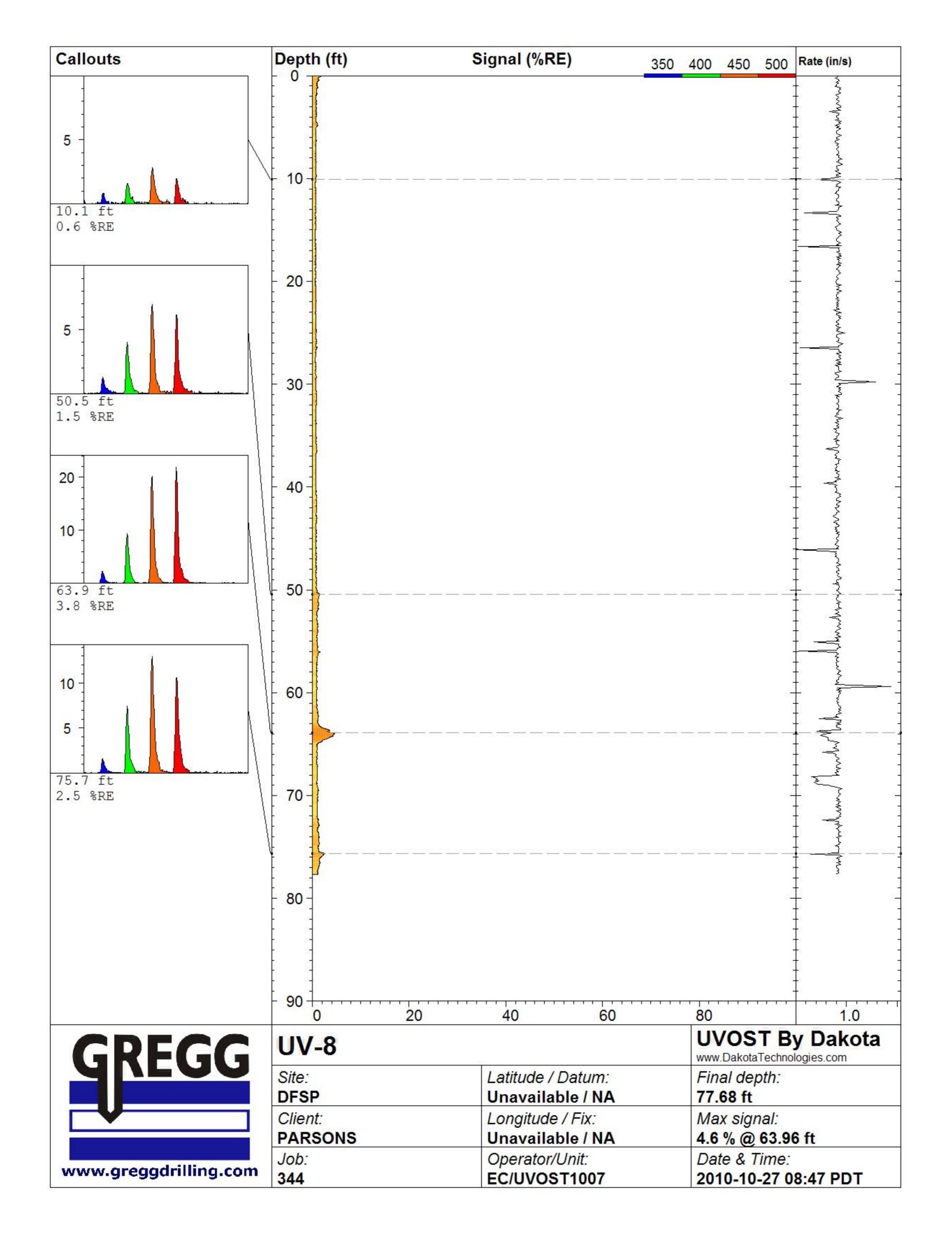
APPENDIX B

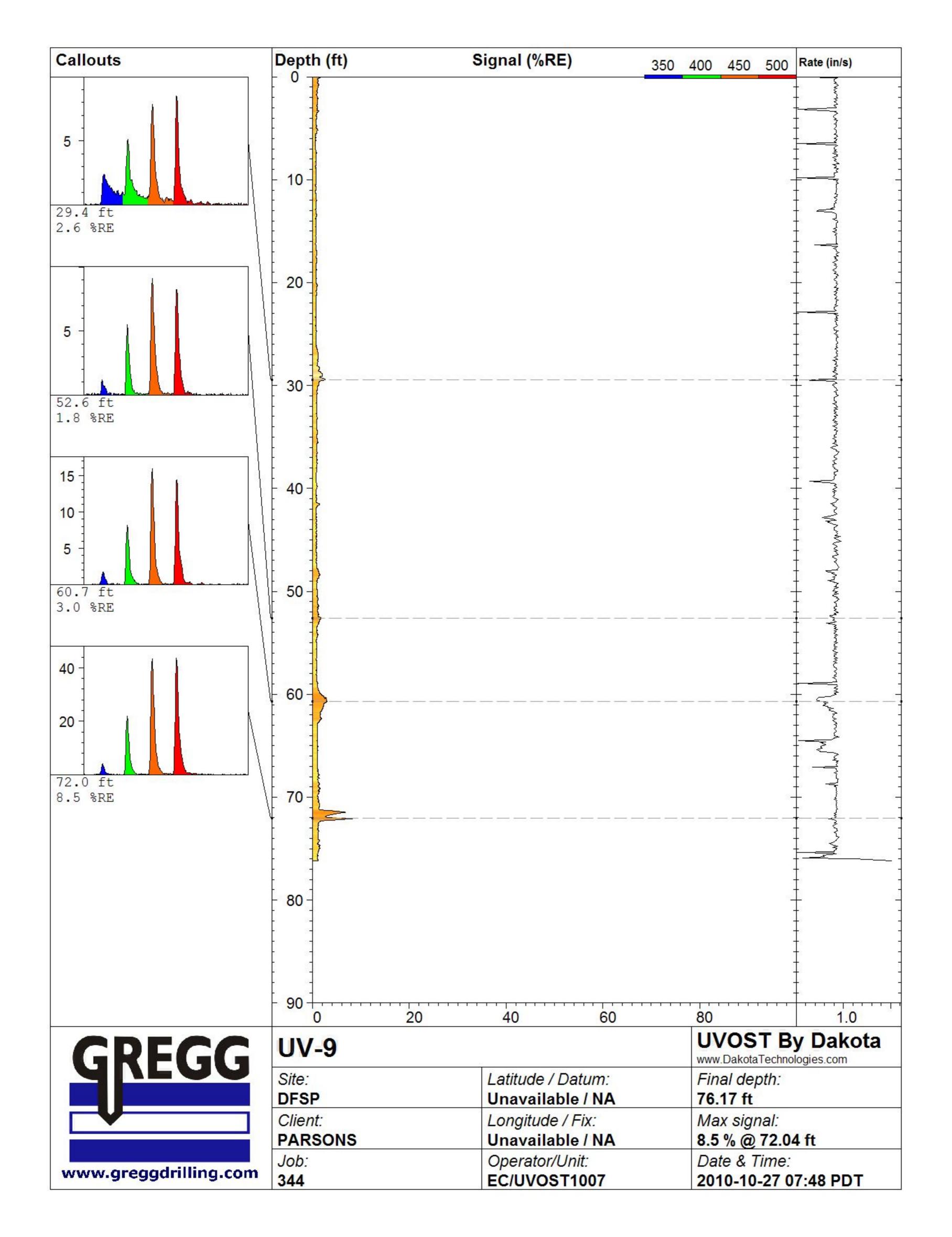

UVOST[®] DATA LOGS

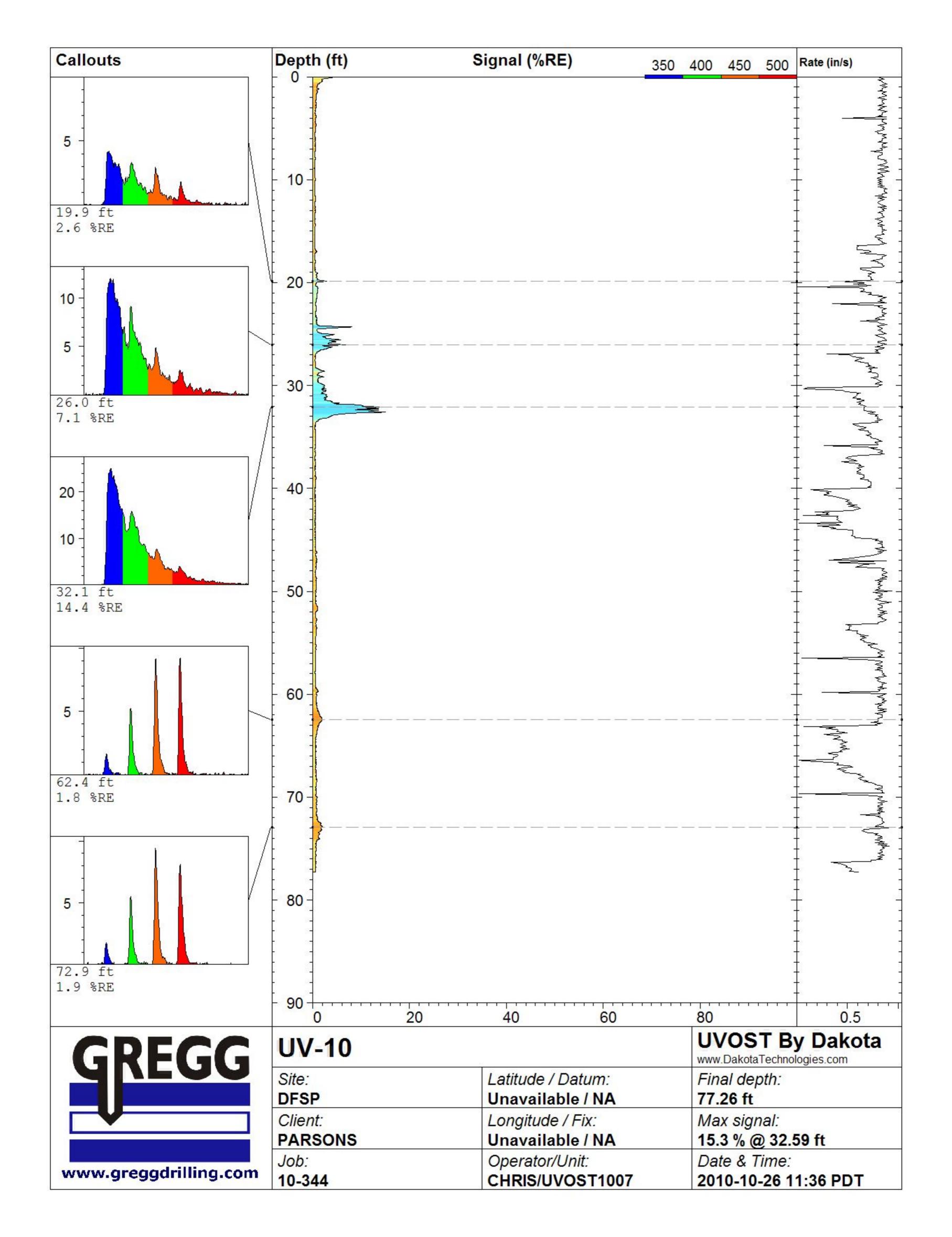


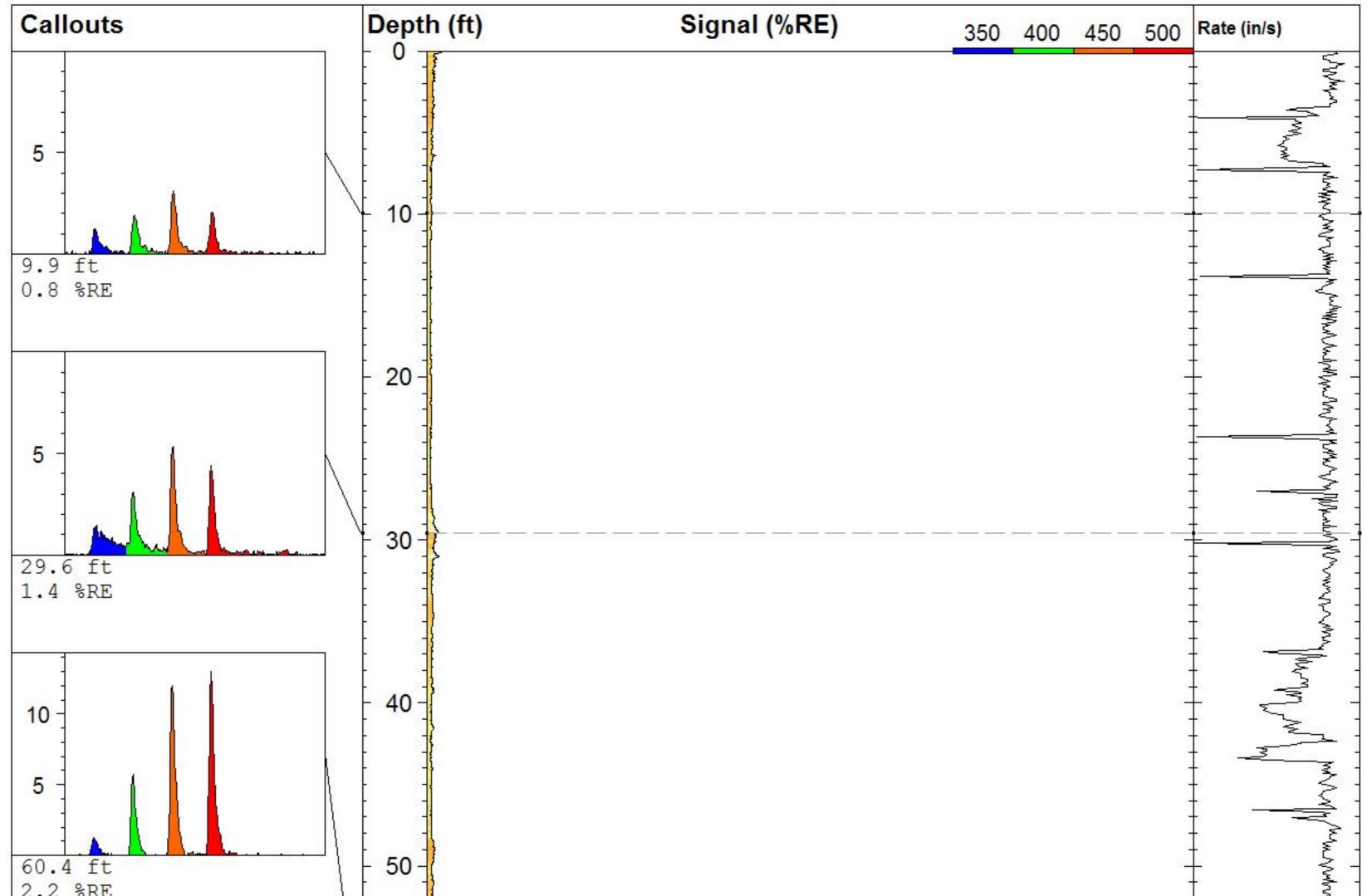


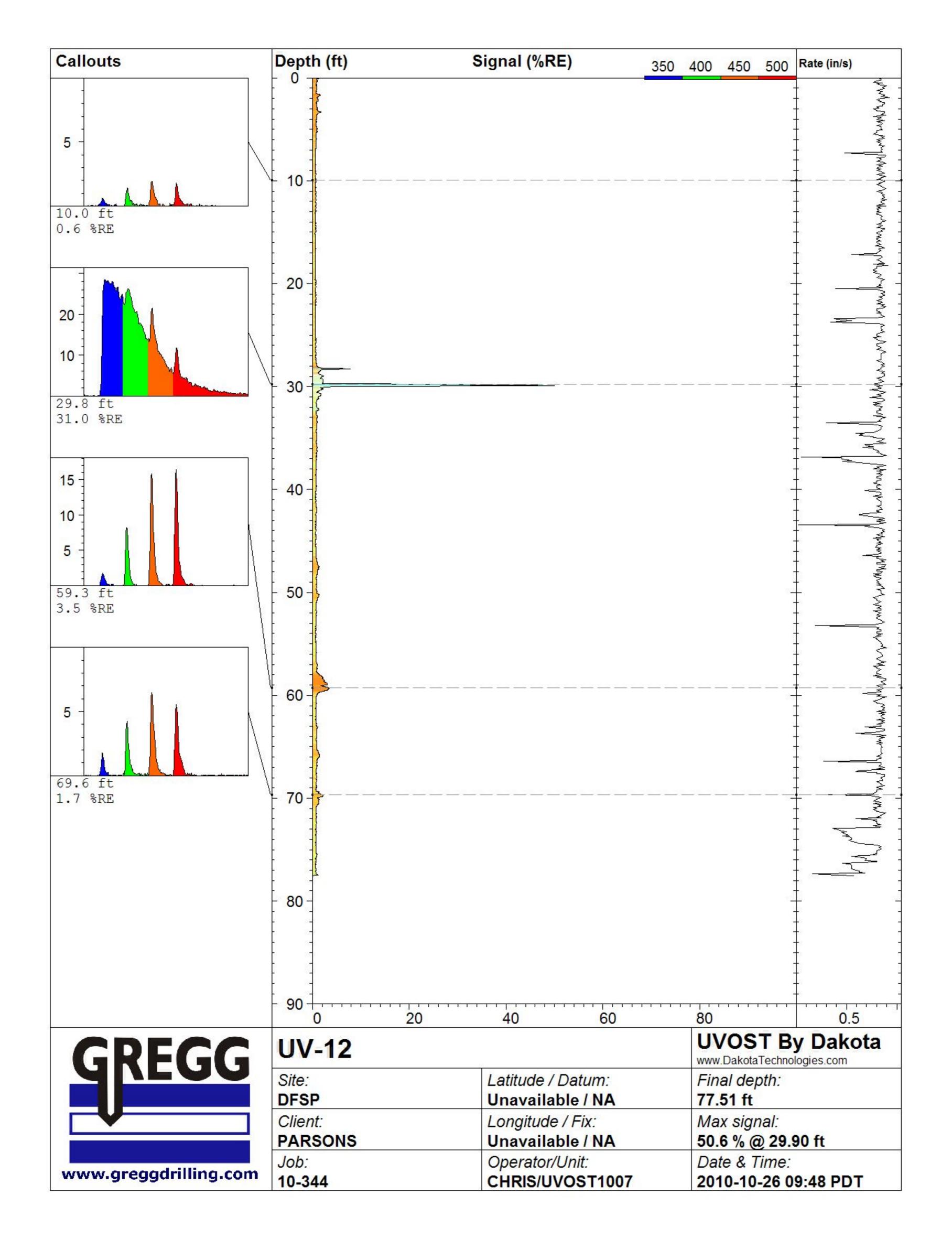


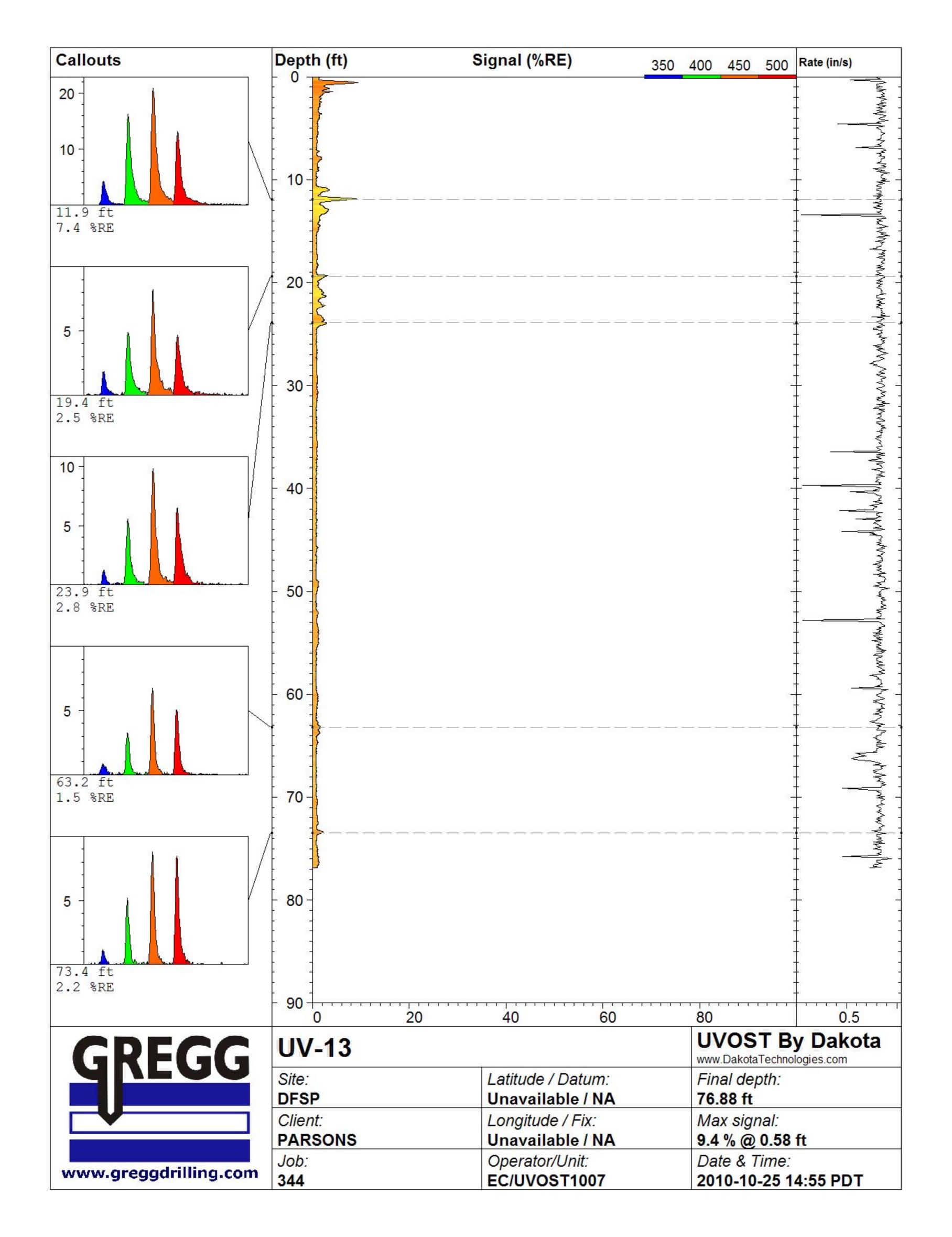

1.3 %RE	60 70 80		
	90 +	40 60	80 1.0
GREGG	UV-3		UVOST By Dakota www.DakotaTechnologies.com
	Site:	Latitude / Datum:	Final depth:
	DFSP	Unavailable / NA	77.48 ft
	Client:	Longitude / Fix:	Max signal:
	PARSONS	Unavailable / NA	8.7 % @ 21.23 ft
www.greggdrilling.com	Job:	Operator/Unit:	Date & Time:
	10-344	CHRIS/UVOST1009	2010-10-25 09:32 PDT

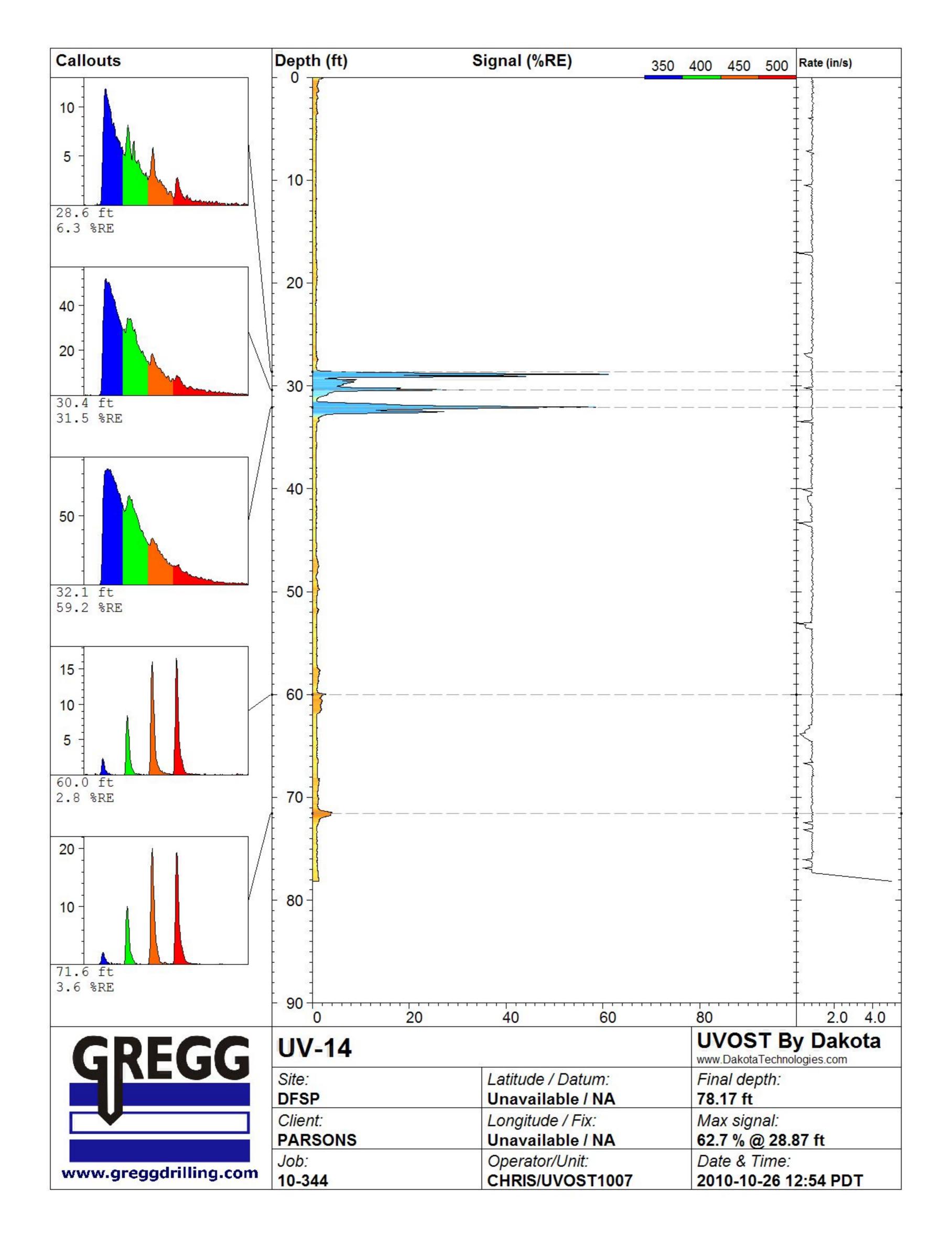


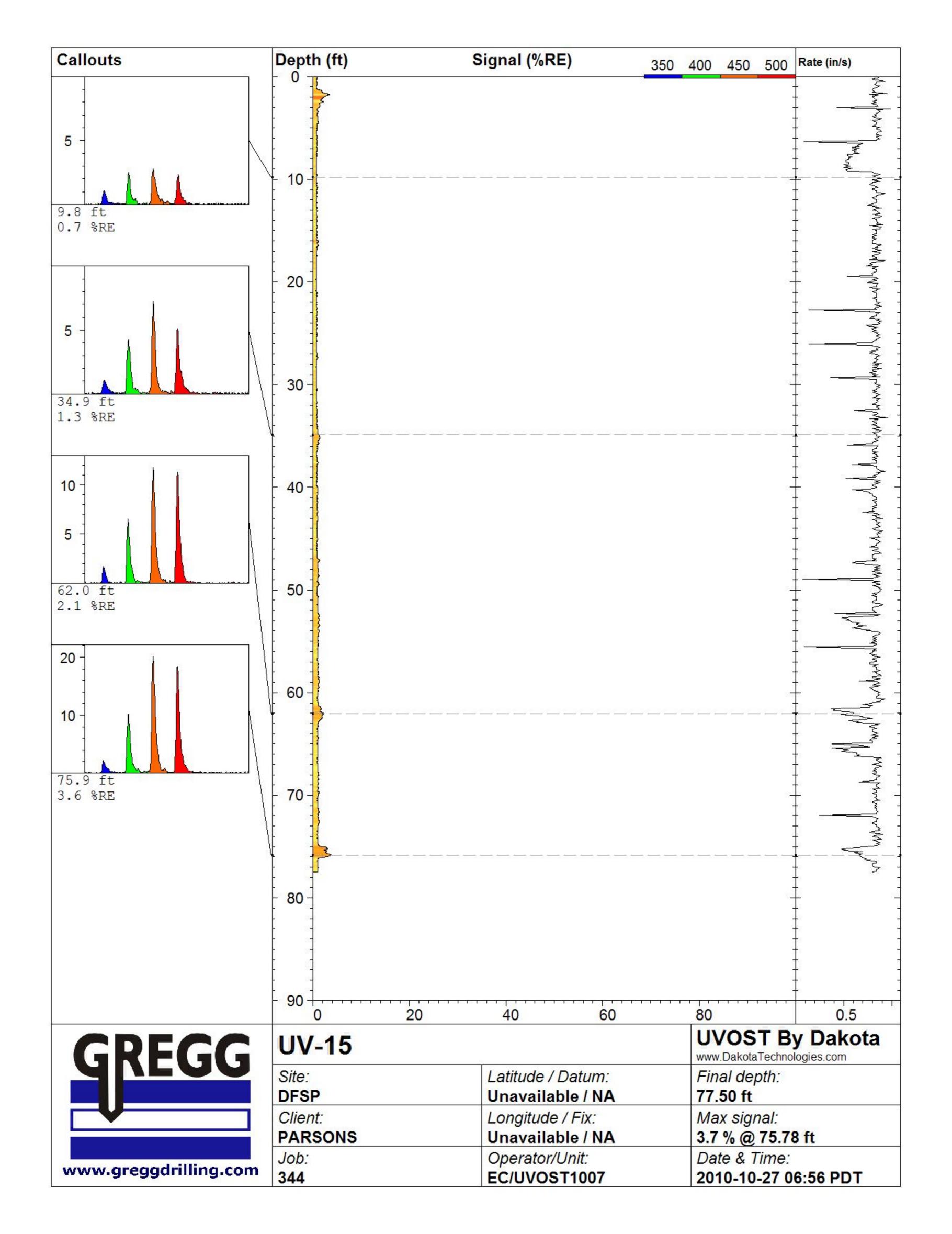




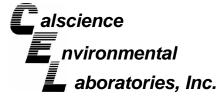








2.2 %RE	60		Annul Annul Annul Annul
	- 70 -		ALANMAN MAN
	- 80 - - 80 -		
	90 90 20 20	40 <u>60</u>	80 0.5 UVOST By Dakota
GREGG	UV-11	<u>*4</u>	www.DakotaTechnologies.com
	Site: DFSP	Latitude / Datum: Unavailable / NA	Final depth: 79.43 ft
	Client: PARSONS	Longitude / Fix: Unavailable / NA	Max signal: 2.2 % @ 60.53 ft
www.greggdrilling.com	Job: 10-344	Operator/Unit: CHRIS/UVOST1007	Date & Time: 2010-10-26 08:42 PDT



APPENDIX C

LABORATORY ANALYTICAL REPORTS

Page 1 of 30

November 11, 2010

Mary Lucas Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

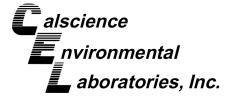
Subject: Calscience Work Order No.: 10-10-2159 Client Reference: DFSP Norwalk / 747565

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/27/2010 and analyzed in accordance with the attached chain-of-custody.


Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.


Sincerely,

Ranjit F. J. Clarke

Calscience Environmental Laboratories, Inc. Ranjit Clarke Project Manager

NELAP ID: 03220CA · DoD-ELAP ID: L10-41 · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Work Order Case Narrative

Project Name:DFSP Norwalk / 747565Calscience Work Order Number:10-10-2159

1. Subcontract Analyses:

This report contains only the analyses performed by Calscience Environmental Labs, Inc. The following analyses were subcontracted to Core Labs:

- pore fluid saturation using American Petroleum Institute Method RP40
- grain size distribution using ASTM International Methods D422 /D4464.

Results for the above analyses will be submitted under separate cover.

2. TPH Fraction (EPH/VPH) - EPA 8015B(M) / EPA 8260B(M):

An e-mail was received from Parsons, Inc. on 10/28/10 specifying that only the following samples required EPH/VPH analysis:

UV-5-28 UV-12-30

Analytical Report

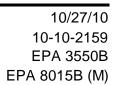
Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received: Work Order No: Preparation: Method: 10/27/10

10-10-2159

EPA 3550B

Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
UV-5-28			10-10-2159-1-A	10/27/10 11:47	Solid	GC 27	10/30/10	11/01/10 11:40	101030B02
Parameter		<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as JP5		2200	25	5		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		109	61-145						
UV-2-30			10-10-2159-2-A	10/27/10 12:18	Solid	GC 27	10/30/10	10/30/10 21:36	101030B02
Comment(s):	-The sample chrom hydrocarbons are a		ern for TPH matches th	ne chromatogra	phic patter	n of the specif	ied standard	l but lighter	
Parameter		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as JP5		510	5.0	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		98	61-145						
UV-12-30			10-10-2159-3-A	10/27/10 13:19	Solid	GC 27	10/30/10	10/30/10 21:54	101030B02
Comment(s):			ern for TPH matches th	ne chromatogra	phic patter	n of the specif	ied standard	l but lighter	
Parameter	hydrocarbons are a	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as JP5		630	5.0	1		mg/kg			
Surrogates:		<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		102	61-145						
UV-10-32			10-10-2159-4-A	10/27/10 13:49	Solid	GC 27	10/30/10	11/01/10 11:58	101030B02
Comment(s):	-The sample chrom hydrocarbons are a		ern for TPH matches th	ne chromatogra	phic patter	n of the specif	ied standard	l but lighter	
Parameter	nyulocarbons are a	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as JP5		3300	50	10	_	mg/kg			
		<u>REC (%)</u>	Control Limits		Qual				
Surrogates:									

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers


hm

Page 4 of 30

NACCOR

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received: Work Order No: Preparation: Method:

Project: DFSP Norwalk / 747	7565						Pa	ige 2 of 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-295-43	N/A	Solid	GC 27	10/30/10	10/30/10 19:49	101030B02
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as JP5	ND	5.0	1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	97	61-145						

alscience ∎_≡ nvironmental aboratories, Inc.

Page 5 of 30

	-												
Parsons, Inc.						Date Re	eceived:				10)/27/1	0
100 West Walnut Street						Work O	rder No:				10-1	0-215	9
Pasadena, CA 91124-00	02					Prepara						3550	
	-					Method			F	ΡΔ 8	3015B (N		
						Units:			-	IA		mg/k	
						Units.					_		
Project: DFSP Norwalk /	/4/565										Page	e 1 of	1
Client Sample Number			Lab S Nun	ample nber		Date/Time Collected	Matrix	Instrument	Date Prepa		Date/Time Analyzed	QC Bat	ch ID
UV-5-28			10-10	-2159-1-/	A	10/27/10 11:47	Solid	GC 50	10/28/	10	10/29/10 16:01	101028	L01
Comment(s): -Results were eva	aluated to th	e MDL. c	oncentrat	ions >= t	o the N	1DL but < RL	if found, an	e qualified wi	h a "J" flao	n.			
Parameter	Result	<u>RL</u>	MDL	DF	Qual	Parameter	ii rearra, ai	e quantea m	Result	<u>RL</u>	MDL	DE	Qual
Aliphatic Hydrocarbons (C9-C18)	13000	5000	2500	500		Aromatic Hy	drocarbons	(C9-C16)	1000	500	250	50	
Aliphatic Hydrocarbons (C19-C32)	850	200	100	20		Aromatic Hy	drocarbons	(C17-C32)	32	10	5.0	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	Qu	al		Surrogates:			<u>REC (%)</u>	<u>Con</u> Limi		ual	
1-Chlorooctadecane	113	<u>Linits</u> 40-140				o-Terphenyl			44	40-1			
UV-12-30			10-10	-2159-3-/	A	10/27/10 13:19	Solid	GC 50	10/28/	10	10/29/10 16:32	101028	L01
Comment(s): -Results were eva	aluated to th	ne MDL, c	oncentrat	ions >= t	o the N	1DL but < RL,	if found, ar	e qualified wi	th a "J" flag	g.			
Parameter	Result	<u>RL</u>	MDL	DF	Qual	Parameter			Result	RL	MDL	DF	Qual
Aliphatic Hydrocarbons (C9-C18)	290	100				<u>r arameter</u>			Result	<u>NL</u>		<u> </u>	
	200	100	50	10		Aromatic Hy		· ,	17	10	<u>5.0</u>	1	
Aliphatic Hydrocarbons (C19-C32)	ND	100	50 5.0	10 1				· ,					
Aliphatic Hydrocarbons (C19-C32) Surrogates:		10 <u>Control</u>		1		Aromatic Hy		· ,	17	10 10 <u>Con</u>	5.0 5.0 trol Q	1	
· · · · · · · · · · · · · · · · · · ·	ND	10	5.0	1		Aromatic Hy Aromatic Hy	drocarbons	· ,	17 ND	10 10	5.0 5.0 <u>trol Q</u> ts	1 1	
Surrogates:	ND <u>REC (%)</u>	10 <u>Control</u> <u>Limits</u>	5.0 <u>Qu</u>	1	i	Aromatic Hy Aromatic Hy <u>Surrogates:</u>	drocarbons	· ,	17 ND <u>REC (%)</u>	10 10 <u>Con</u> <u>Limi</u> 40-1	5.0 5.0 <u>trol Q</u> ts	1 1	
Surrogates: 1-Chlorooctadecane Method Blank	ND <u>REC (%)</u> 110	10 <u>Control</u> <u>Limits</u> 40-140	5.0 Qu 099-1	1 <u>al</u> 3-033-26		Aromatic Hy Aromatic Hy <u>Surrogates:</u> o-Terphenyl N/A	rdrocarbons Solid	(C17-C32) GC 50	17 ND <u>REC (%)</u> 96 10/28/	10 10 <u>Con</u> <u>Limi</u> 40-1	5.0 5.0 <u>trol Q</u> t <u>s</u> 40 10/29/10	1 1 Jual	
Surrogates: 1-Chlorooctadecane Method Blank Comment(s): -Results were eva	ND REC (%) 110	10 <u>Control</u> <u>Limits</u> 40-140	5.0 Qu 099-1:	1 <u>al</u> 3-033-26		Aromatic Hy Aromatic Hy <u>Surrogates:</u> o-Terphenyl N/A	rdrocarbons Solid	(C17-C32) GC 50	17 ND <u>REC (%)</u> 96 10/28/ th a "J" flag	10 10 <u>Con</u> <u>Limi</u> 40-1 10 g.	5.0 5.0 <u>trol Q</u> t <u>s</u> 40 10/29/10	1 1 <u>eual</u> 101028	
Surrogates: 1-Chlorooctadecane Method Blank	ND <u>REC (%)</u> 110	10 <u>Control</u> <u>Limits</u> 40-140	5.0 Qu 099-1	1 3-033-26 ions >= t	o the N	Aromatic Hy Aromatic Hy <u>Surrogates:</u> o-Terphenyl N/A 1DL but < RL,	drocarbons Solid if found, ar	(C17-C32) GC 50 e qualified wi	17 ND <u>REC (%)</u> 96 10/28/	10 10 <u>Con</u> <u>Limi</u> 40-1	5.0 5.0 trol Q ts 140 10/29/10 14:13	1 1 201 101028	L01
Surrogates: 1-Chlorooctadecane Method Blank Comment(s): -Results were even Parameter	ND REC (%) 110 aluated to th <u>Result</u>	10 <u>Control</u> <u>Limits</u> 40-140 ne MDL, constant <u>RL</u>	5.0 Qu 099-1 oncentrat <u>MDL</u>	1 3-033-26 ions >= t <u>DF</u>	o the N	Aromatic Hy Aromatic Hy <u>Surrogates:</u> o-Terphenyl N/A 1DL but < RL, <u>Parameter</u>	Solid if found, ar	(C17-C32) GC 50 e qualified wi (C9-C16)	17 ND <u>REC (%)</u> 96 10/28/ th a "J" flag <u>Result</u>	10 10 <u>Con</u> <u>Limi</u> 40-1 10 g. <u>RL</u>	5.0 5.0 trol Q ts 140 10/29/10 14:13 <u>MDL</u>	1 1 1 101028 DF	L01
Surrogates: 1-Chlorooctadecane Method Blank Comment(s): -Results were even Parameter Aliphatic Hydrocarbons (C9-C18)	ND REC (%) 110 aluated to th <u>Result</u> ND	10 <u>Control</u> <u>Limits</u> 40-140 ne MDL, cr <u>RL</u> 10 10	5.0 Qu 099-1 oncentrat <u>MDL</u> 5.0	1 3-033-26 ions >= t <u>DF</u> 1 1	o the N	Aromatic Hy Aromatic Hy <u>Surrogates:</u> o-Terphenyl N/A IDL but < RL, <u>Parameter</u> Aromatic Hy	Solid if found, ar	(C17-C32) GC 50 e qualified wi (C9-C16)	17 ND <u>REC (%)</u> 96 10/28/ th a "J" flag <u>Result</u> ND	10 10 <u>Con</u> <u>Limi</u> 40-1 10 g. <u>RL</u> 10 10	5.0 5.0 <u>trol</u> Q ts 40 10/29/10 14:13 5.0 5.0 5.0 trol Q	1 1 1 101028 <u>DF</u> 1	L01

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

hM

Page 6 of 30

A DECORDANCE

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received: Work Order No: Preparation: Method:

EPA 8015B (M)

Page 1 of 2

10/27/10

10-10-2159

EPA 5035

Project: DFSP Norwalk / 747565

Tiojeot. Et et Horwalk	, 111000						1.0	go i oi z
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
UV-5-28		10-10-2159-1-H	10/27/10 11:47	Solid	GC 29	10/27/10	11/01/10 12:04	101101B01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	26000	1100	4580		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	107	60-126						
UV-2-30		10-10-2159-2-F	10/27/10 12:18	Solid	GC 29	10/27/10	11/01/10 12:39	101101B01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	370	42	169		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	92	60-126						
UV-12-30		10-10-2159-3-F	10/27/10 13:19	Solid	GC 18	10/27/10	11/02/10 17:45	101101B03
Parameter	Result	<u>RL</u>	DE	Qual	<u>Units</u>			
TPH as Gasoline	21	12	46		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	94	60-126						
UV-10-32		10-10-2159-4-F	10/27/10 13:49	Solid	GC 18	10/27/10	11/02/10 18:23	101101B03
Parameter	<u>Result</u>	<u>RL</u>	DE	Qual	<u>Units</u>			
TPH as Gasoline	32	11	43.6		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	98	60-126						

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Page 7 of 30

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received: Work Order No: Preparation: Method:

Page 2 of 2

Project: DFSP Norwalk / 747565

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-285-3,095	N/A	Solid	GC 29	11/01/10	11/01/10 10:19	101101B01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	10	40		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	80	60-126						
Method Blank		099-12-285-3,107	N/A	Solid	GC 18	11/01/10	11/02/10 05:43	101101B03
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	10	40		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	89	60-126						

Date Received:

Parsons, Inc. 100 West Walnut Street Pasaden

					Duiterite						/21/10	
100 West Walnut Stree	et				Work O				10-10)-2159)	
Pasadena, CA 91124-0	002				Prepara	tion:				EPA	A 5035	5
,					Method						8260E	
										LFA		
					Units:						ug/kg]
Project: DFSP Norwalk	747565</th <th>5</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Page</th> <th>1 of 7</th> <th>7</th>	5								Page	1 of 7	7
			Lab Sa	•	Date/Time	Motrix	lo otrum ont	Date		e/Time		
Client Sample Number			Num	per	Collected	Matrix	Instrument	Prepar			QC Bate	
UV-5-28			10-10-2	2159-1 -H	10/27/10 11:47	Solid	GC/MS V V	/ 10/27/ [/]		29/10 1:26	101029	L 02
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ons >= to the N	/IDL but < RL,	if found, ar	e qualified wit	th a "J" flaç	j .			
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	DF	Qual
Acetone	ND	46000	5900	916	c-1,3-Dichlo	ropropene		ND	920	170	916	
Benzene	110000	920	120	916	t-1,3-Dichlo	opropene		ND	1800	1700	916	
Bromobenzene	ND	920	190	916	Ethylbenzen	е		340000	9200	1400	9160)
Bromochloromethane	ND	1800	1300	916	2-Hexanone			ND	18000	5100	916	
Bromodichloromethane	ND	920	130	916	Isopropylber	nzene		27000	920	110	916	
Bromoform	ND	4600	610	916	p-Isopropylte	oluene		9600	920	110	916	
Bromomethane	ND	18000	1700	916	Methylene C	hloride		ND	9200	4700	916	
2-Butanone	ND	18000	8800	916	4-Methyl-2-F	Pentanone		ND	18000	1900	916	
n-Butylbenzene	48000	920	200	916	Naphthalene	9		72000	9200	300	916	В
sec-Butylbenzene	14000	920	95	916	n-Propylben	zene		87000	1800	940	916	
tert-Butylbenzene	ND	920	110	916	Styrene			ND	920	190	916	
Carbon Disulfide	ND	9200	160	916	1,1,1,2-Tetra	achloroetha	ne	ND	920	300	916	
Carbon Tetrachloride	ND	920	290	916	1,1,2,2-Tetra	achloroetha	ne	ND	1800	210	916	
Chlorobenzene	ND	920	140	916	Tetrachloroe	ethene		ND	920	160	916	
Chloroethane	ND	1800	380	916	Toluene			660000	9200	1400	9160)
Chloroform	6900	920	160	916	1,2,3-Trichle	orobenzene		ND	1800	190	916	
Chloromethane	ND	18000	2700	916	1,2,4-Trichle			ND	1800	170	916	
2-Chlorotoluene	ND	920	110	916	1,1,1-Trichle			ND	920	230	916	
4-Chlorotoluene	ND	920	96	916	1,1,2-Trichk			ND	920	220	916	
Dibromochloromethane	ND	1800	180	916			rifluoroethane		9200	430	916	
1,2-Dibromo-3-Chloropropane	ND	4600	3400	916	Trichloroeth			ND	1800	170	916	
1,2-Dibromoethane	ND	920	410	916	Trichlorofluc			ND	9200	140	916	
Dibromomethane	ND	920	640	916	1,2,3-Trichle			ND	1800	600	916	
1,2-Dichlorobenzene	ND	920	120	916	1,2,4-Trimet	• •	<u>,</u>	700000	18000	1100	9160)
1,3-Dichlorobenzene	ND	920	150	916	1,3,5-Trimet			160000	1800	90	916	в
1,4-Dichlorobenzene	ND	920	140	916	Vinyl Acetat			ND	9200	6800	916	
Dichlorodifluoromethane	ND	1800	180	916	Vinyl Chlorid			ND	920	200	916	
1,1-Dichloroethane	ND	920	150	916	p/m-Xylene			1300000		1800	9160)
1,2-Dichloroethane	ND	920	160	916	o-Xylene			460000	9200	1100	9160)
1,1-Dichloroethene	ND	920	130	916	Methyl-t-But	vl Ether (M	TBF)	ND	1800	120	916	
c-1,2-Dichloroethene	ND	920	260	916	Tert-Butyl A			ND	18000	14000	916	
t-1,2-Dichloroethene	ND	920	230	916	Diisopropyl		,	ND	920	230	916	
1,2-Dichloropropane	ND	920	240	916	Ethyl-t-Butyl	•	,	ND	920	200	916	
1,3-Dichloropropane	ND	920	160	916	Tert-Amyl-N			ND	920	120	916	
2,2-Dichloropropane	ND	4600	420	916	Ethanol		()	ND	460000	92000	916	
1,1-Dichloropropene	ND	1800	200	916						02000		
Surrogates:	<u>REC (%)</u>	<u>Control</u>	<u>Qua</u>	<u>I</u>	Surrogates:			<u>REC (%)</u>		<u>Q</u> ı	ual	
	407	Limits				ath an eild		00	Limits			
Dibromofluoromethane	107	79-133			1,2-Dichloro	ethane-d4		99	71-155			
1,4-Bromofluorobenzene	104	80-120			Toluene-d8			106	80-120			

RL - Reporting Limit , DF - Dilution Factor ,

```
Qual - Qualifiers
```

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 8 of 30

10/27/10

IN ACCORD

Page 9 of 30

10/27/10

Parsons, Inc. t Wal .1 01 100 W Pasa

100 West Walnut Street	t				Work O	rder No				10-1	0-2159)
Pasadena, CA 91124-0	002				Prepara						A 5035	
					Method							
					Units:	•				EPA	8260E ug/kg	
Drainate DESD Narwalk	1717565	-			Ormo.					D		-
Project: DFSP Norwalk	/ / 4/ 500)								Page	e 2 of 7	-
Client Sample Number			Lab Sa Numl		Date/Time Collected	Matrix	Instrument	Date Prepar		e/Time alyzed	QC Bate	ch ID
UV-2-30			10-10-2	2159-2-F	10/27/10 12:18	Solid	GC/MS V V	/ 10/27/		29/10 1:56	101028	L 0 4
Comment(s): -Results were e	valuated to th	ne MDL. c	oncentratio	ons >= to the N	-	. if found. a	re qualified wi	th a "J" flac	1.			
Parameter	Result	<u>RL</u>	MDL	DF Qual	Parameter	,,.,		Result	, <u>RL</u>	MDL	DF	Qual
Acetone	ND	4200	540	84.7	c-1,3-Dichlo	propropene		ND	85	15	84.7	
Benzene	100	85	11	84.7	t-1,3-Dichlo			ND	170	160	84.7	
Bromobenzene	ND	85	18	84.7	Ethylbenzer	• •		1900	85	13	84.7	
Bromochloromethane	ND	170	120	84.7	2-Hexanone			ND	1700	470	84.7	
Bromodichloromethane	ND	85	12	84.7	Isopropylbe			340	85	10	84.7	
Bromoform	ND	420	56	84.7	p-Isopropylt			250	85	9.8	84.7	
Bromomethane	ND	1700	160	84.7	Methylene (ND	850	440	84.7	
2-Butanone	ND	1700	810	84.7	4-Methyl-2-			ND	1700	170	84.7	
n-Butylbenzene	680	85	19	84.7	Naphthalen			1100	850	28	84.7	в
sec-Butylbenzene	220	85	8.7	84.7	n-Propylber			960	170	87	84.7	D
tert-Butylbenzene	ND	85	10	84.7	Styrene	20110		ND	85	17	84.7	
Carbon Disulfide	ND	850	15	84.7	1,1,1,2-Tetr	achloroetha	ne	ND	85	28	84.7	
Carbon Tetrachloride	ND	85	27	84.7	1,1,2,2-Tetr			ND	170	20	84.7	
Chlorobenzene	ND	85	13	84.7	Tetrachloro			ND	85	14	84.7	
Chloroethane	ND	170	35	84.7	Toluene	ouriorio		1000	85	13	84.7	
Chloroform	40	85	15	84.7 J	1,2,3-Trichl	orobenzene		ND	170	17	84.7	
Chloromethane	ND	1700	250	84.7	1,2,4-Trichl			ND	170	15	84.7	
2-Chlorotoluene	ND	85	9.9	84.7	1,1,1-Trichl			ND	85	21	84.7	
4-Chlorotoluene	ND	85	8.8	84.7	1,1,2-Trichl			ND	85	20	84.7	
Dibromochloromethane	ND	170	17	84.7			rifluoroethane		850	40	84.7	
1,2-Dibromo-3-Chloropropane	ND	420	310	84.7	Trichloroeth		inderection	ND	170	15	84.7	
1,2-Dibromoethane	ND	85	38	84.7	Trichloroflu			ND	850	13	84.7	
Dibromomethane	ND	85	59	84.7	1,2,3-Trichl			ND	170	55	84.7	
1,2-Dichlorobenzene	ND	85	11	84.7	1,2,4-Trime			5300	170	9.9	84.7	
1,3-Dichlorobenzene	ND	85	14	84.7	1,3,5-Trime			1800	170	8.4	84.7	
1,4-Dichlorobenzene	ND	85	13	84.7	Vinyl Acetat			ND	850	630	84.7	
Dichlorodifluoromethane	ND	170	16	84.7	Vinyl Chlori			ND	85	18	84.7	
1.1-Dichloroethane	ND	85	13	84.7	p/m-Xylene			7400	170	17	84.7	
1,2-Dichloroethane	ND	85	14	84.7	o-Xylene			2700	85	9.7	84.7	
1,1-Dichloroethene	ND	85	12	84.7	Methyl-t-Bu	tvl Ether (M	TBE)	ND	170	11	84.7	
c-1,2-Dichloroethene	ND	85	24	84.7	Tert-Butyl A	•	,	ND	1700	1300	84.7	
t-1,2-Dichloroethene	ND	85	21	84.7	Diisopropyl	•	,	ND	85	21	84.7	
1,2-Dichloropropane	ND	85	23	84.7	Ethyl-t-Buty			ND	85	18	84.7	
1,3-Dichloropropane	ND	85	15	84.7	Tert-Amyl-N			ND	85	11	84.7	
2,2-Dichloropropane	ND	420	39	84.7	Ethanol		()	ND	42000	8500	84.7	
1,1-Dichloropropene	ND	170	19	84.7	Ethanol				.2000		-	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual	
Dibromofluoromethane	96	79-133			1,2-Dichloro	oethano-d4		92	71-155			
1,4-Bromofluorobenzene	101	80-120			Toluene-d8			32 102	80-120			
1,+-DIOMONUOIODENZENE	101	00-120						102	00-120			

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

Date Received:

Page 10 of 30

ACCAED.	n	e	a	C	CEW	
			10	/27/	10	•

Parsons, Inc.					Date Received:				10)/27/10)
100 West Walnut Stree	et				Work Order No:				10-1	0-2159)
Pasadena, CA 91124-0	002				Preparation:				FP	A 5035	5
					Method:					8260E	
									LFA		
					Units:					ug/ko	
Project: DFSP Norwalk	(747565	5							Page	e 3 of 7	7
Client Sample Number			Lab Sa Num	•	Date/Time Collected Matrix In	strument	Date Prepar		ite/Time nalyzed	QC Bate	ch ID
UV-12-30			10-10-2	2159-3-F	10/27/10 Solid G0 13:19	C/MS V V	10/27/	10 10	0/29/10 12:22	101028	L04
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentrati	ons >= to the	MDL but < RL, if found, are qu	ualified wit	h a "J" flag] .			
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> Qua	Parameter		Result	<u>RL</u>	MDL	DF	<u>Qual</u>
Acetone	ND	4600	590	92.1	c-1,3-Dichloropropene		ND	92	17	92.1	
Benzene	1500	92	12	92.1	t-1,3-Dichloropropene		ND	180	180	92.1	
Bromobenzene	ND	92	19	92.1	Ethylbenzene		470	92	14	92.1	
Bromochloromethane	ND	180	130	92.1	2-Hexanone		ND	1800	520	92.1	
Bromodichloromethane	ND	92	14	92.1	Isopropylbenzene		64	92	11	92.1	J
Bromoform	ND	460	61	92.1	p-Isopropyltoluene		28	92	11	92.1	J
Bromomethane	ND	1800	170	92.1	Methylene Chloride		ND	920	480	92.1	
2-Butanone	ND	1800	880	92.1	4-Methyl-2-Pentanone		ND	1800	190	92.1	
n-Butylbenzene	67	92	20	92.1 J	Naphthalene		340	920	30	92.1	B,J
sec-Butylbenzene	27	92	9.5	92.1 J	n-Propylbenzene		120	180	94	92.1	J
tert-Butylbenzene	ND	92	11	92.1	Styrene		ND	92	19	92.1	
Carbon Disulfide	34	920	16	92.1 J	1,1,1,2-Tetrachloroethane		ND	92	31	92.1	
Carbon Tetrachloride	ND	92	29	92.1	1,1,2,2-Tetrachloroethane		ND	180	21	92.1	
Chlorobenzene	ND	92	14	92.1	Tetrachloroethene		ND	92	16	92.1	
Chloroethane	ND	180	38	92.1	Toluene		480	92	14	92.1	
Chloroform	ND	92	16	92.1	1,2,3-Trichlorobenzene		ND	180	19	92.1	
Chloromethane	ND	1800	270	92.1	1,2,4-Trichlorobenzene		ND	180	17	92.1	
2-Chlorotoluene	ND	92	11	92.1	1,1,1-Trichloroethane		ND	92	23	92.1	
4-Chlorotoluene	ND	92	9.6	92.1	1,1,2-Trichloroethane		ND	92	22	92.1	
Dibromochloromethane	ND	180	18	92.1	1,1,2-Trichloro-1,2,2-Trifluo	proethane	ND	920	43	92.1	
1,2-Dibromo-3-Chloropropane	ND	460	340	92.1	Trichloroethene		ND	180	17	92.1	
1,2-Dibromoethane	ND	92	41	92.1	Trichlorofluoromethane		ND	920	14	92.1	
Dibromomethane	ND	92	65	92.1	1,2,3-Trichloropropane		ND	180	60	92.1	
1,2-Dichlorobenzene	ND	92	12	92.1	1,2,4-Trimethylbenzene		680	180	11	92.1	
1,3-Dichlorobenzene	ND	92	15	92.1	1,3,5-Trimethylbenzene		240	180	9.1	92.1	
1,4-Dichlorobenzene	ND	92	14	92.1	Vinyl Acetate		ND	920	690	92.1 92.1	
Dichlorodifluoromethane	ND	180	18	92.1	Vinyl Chloride		ND	92	20		
1,1-Dichloroethane	ND	92	15	92.1	p/m-Xylene		2100	180	19	92.1	
1,2-Dichloroethane	ND	92	16	92.1	o-Xylene		780	92	11	92.1	
1,1-Dichloroethene	ND	92	13	92.1 92.1	Methyl-t-Butyl Ether (MTBE)	ND	180	12	92.1 92.1	
c-1,2-Dichloroethene	ND	92 02	26	92.1 92.1	Tert-Butyl Alcohol (TBA)		ND	1800	1400	92.1 92.1	
t-1,2-Dichloroethene	ND	92 02	23	92.1 92.1	Diisopropyl Ether (DIPE) Ethyl-t-Butyl Ether (ETBE)		ND	92 02	23	92.1 92.1	
1,2-Dichloropropane 1,3-Dichloropropane	ND	92 92	25 16	92.1 92.1	Tert-Amyl-Methyl Ether (TA		ND ND	92 92	20 12	92.1 92.1	
2,2-Dichloropropane	ND ND	92 460	16 42	92.1 92.1	Ethanol		ND ND	92 46000	12 9200	92.1	
1,1-Dichloropropene	ND	460 180	42 20	92.1 92.1			שאי	40000	9200	32.1	
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>1</u>	Surrogates:		<u>REC (%)</u>	<u>Contro</u> Limits	<u>L Q</u>	ual	
Dibromofluoromethane	91	<u>1111115</u> 79-133			1,2-Dichloroethane-d4		92	71-155			
		79-133 80-120						80-120			
1,4-Bromofluorobenzene	100	00-120			Toluene-d8		100	00-120	,		

DF - Dilution Factor , RL - Reporting Limit ,

Qual - Qualifiers

MM

Date Received:

Page 11 of 30

10/27/10

Parsons, Inc. 100 West Walnut Street Pas

	ult <u>RI</u> 87 17 87	Date/Time Analyzed 10/29/10 12:49	e 4 of 7 QC Batch ID 101028L04 = <u>DF</u> Qual 87.3
UV-10-32 10-10-2159-4-F 10/27/10 Solid GC/MS V V 1	0/27/10 J" flag. <u>ult RL</u> 87 17 87	10/29/10 12:49	<u> </u>
	ult <u>RI</u> 87 17 87	<u> </u>	
Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "	ult <u>RI</u> 87 17 87	' 16	
Parameter Result RL MDL DF Qual Parameter Res	17 87		87 3
Acetone ND 4400 560 87.3 c-1,3-Dichloropropene ND	17 87		01.0
Benzene 2000 87 12 87.3 t-1,3-Dichloropropene ND	87	0 170	87.3
Bromobenzene ND 87 18 87.3 Ethylbenzene 190	17	′ 14	87.3
Bromochloromethane ND 170 120 87.3 2-Hexanone ND	17	00 490	87.3
Bromodichloromethane ND 87 13 87.3 Isopropylbenzene 56	87	' 10	87.3 J
Bromoform ND 440 58 87.3 p-Isopropyltoluene 26	87	' 10	87.3 J
Bromomethane ND 1700 160 87.3 Methylene Chloride ND	87	0 450	87.3
2-Butanone ND 1700 830 87.3 4-Methyl-2-Pentanone ND	17	00 180	87.3
n-Butylbenzene 51 87 19 87.3 J Naphthalene 160	87	0 28	87.3 B,J
sec-Butylbenzene 27 87 9.0 87.3 J n-Propylbenzene 100	17	0 89	87.3 J
tert-Butylbenzene ND 87 11 87.3 Styrene ND	87	′ 18	87.3
Carbon Disulfide ND 870 15 87.3 1,1,1,2-Tetrachloroethane ND	87	29	87.3
Carbon Tetrachloride ND 87 28 87.3 1,1,2,2-Tetrachloroethane ND	17	0 20	87.3
Chlorobenzene ND 87 13 87.3 Tetrachloroethene ND	87	′ 15	87.3
Chloroethane ND 170 36 87.3 Toluene 74	87	' 13	87.3 J
Chloroform ND 87 15 87.3 1,2,3-Trichlorobenzene ND	17		87.3
Chloromethane ND 1700 250 87.3 1,2,4-Trichlorobenzene ND	17		87.3
2-Chlorotoluene ND 87 10 87.3 1,1,1-Trichloroethane ND	87	22	87.3
4-Chlorotoluene ND 87 9.1 87.3 1,1,2-Trichloroethane ND	87		87.3
Dibromochloromethane ND 170 17 87.3 1,1,2-Trichloro-1,2,2-Trifluoroethane ND	87		87.3
1,2-Dibromo-3-Chloropropane ND 440 320 87.3 Trichloroethene ND	17		87.3
1,2-Dibromoethane ND 87 39 87.3 Trichlorofluoromethane ND	87		87.3
Dibromomethane ND 87 61 87.3 1,2,3-Trichloropropane ND	17		87.3
1,2-Dichlorobenzene ND 87 11 87.3 1,2,4-Trimethylbenzene 340			87.3
1,3-Dichlorobenzene ND 87 14 87.3 1,3,5-Trimethylbenzene 130	17		87.3 J
1,4-Dichlorobenzene ND 87 13 87.3 Vinyl Acetate ND	87		87.3
Dichlorodifluoromethane ND 170 17 87.3 Vinyl Chloride ND	87		87.3
1,1-Dichloroethane ND 87 14 87.3 p/m-Xylene 560 1.2 Dichloroethane ND 87 14 87.3 p/m-Xylene 560	17		87.3
1,2-Dichloroethane ND 87 15 87.3 o-Xylene 190 1.4 Dichloroethane ND 87 10 87.3 o-Xylene 190	87		87.3 87.2
1,1-Dichloroethene ND 87 12 87.3 Methyl-t-Butyl Ether (MTBE) ND c-1.2-Dichloroethene ND 87 25 87.3 Tert-Butyl Alcohol (TBA) ND	17		87.3 87.3
	17		87.3
	87		87.3
1,2-Dichloropropane ND 87 23 87.3 Ethyl-t-Butyl Ether (ETBE) ND 1,3-Dichloropropane ND 87 15 87.3 Tert-Amyl-Methyl Ether (TAME) ND	87 87		87.3
2,2-Dichloropropane ND 440 40 87.3 Ethanol ND		000 8700	87.3
1,1-Dichloropropene ND 170 19 87.3	-+4	0100	01.0
	<u>C (%)</u> Co	ontrol (Qual
Limits		mits	
Dibromofluoromethane 94 79-133 1,2-Dichloroethane-d4 96	71	-155	
1,4-Bromofluorobenzene 100 80-120 Toluene-d8 101	80)-120	

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

MM

Date Received:

Page 12 of 30

10/27/10

Parsons, Inc. 100 West Walnut Street Pasa

100 West Walnut Stree Pasadena, CA 91124-0 Project: DFSP Norwalk	002				Work Order No: Preparation: Method: Units:						10-10-2159 EPA 5035 EPA 8260B ug/kg Page 5 of 7		
Flojeci. DFSF Norwaik	(747505	,	Lab Sar	nple	Date/Time	Martain	les de constat	Date		e/Time			
Client Sample Number			Numb	ber	Collected	Matrix	Instrument	Prepar		alyzed	QC Bate	ch ID	
Method Blank			095-01-	025-20,715	N/A	Solid	GC/MS V V	/ 10/28/	10	/29/10)4:00	101028	L04	
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ns >= to the N	MDL but < RL	, if found, a	re qualified wi	th a "J" flaç	j .				
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> <u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	DF	<u>Qual</u>	
Acetone	ND	5000	640	100	c-1,3-Dichle			ND	100	18	100		
Benzene	ND	100	13	100	t-1,3-Dichlo	ropropene		ND	200	190	100		
Bromobenzene	ND	100	21	100	Ethylbenzer	ne		ND	100	15	100		
Bromochloromethane	ND	200	140	100	2-Hexanone	9		ND	2000	560	100		
Bromodichloromethane	ND	100	15	100	Isopropylbe	nzene		ND	100	12	100		
Bromoform	ND	500	66	100	p-Isopropylt	oluene		ND	100	12	100		
Bromomethane	ND	2000	180	100	Methylene (Chloride		ND	1000	520	100		
2-Butanone	ND	2000	960	100	4-Methyl-2-	Pentanone		ND	2000	200	100		
n-Butylbenzene	ND	100	22	100	Naphthalen	е		43	1000	33	100	J	
sec-Butylbenzene	ND	100	10	100	n-Propylber	nzene		ND	200	100	100		
tert-Butylbenzene	ND	100	12	100	Styrene			ND	100	21	100		
Carbon Disulfide	ND	1000	18	100	1,1,1,2-Tetr	achloroetha	ine	ND	100	33	100		
Carbon Tetrachloride	ND	100	32	100	1,1,2,2-Tetr	achloroetha	ine	ND	200	23	100		
Chlorobenzene	ND	100	15	100	Tetrachloro	ethene		ND	100	17	100		
Chloroethane	ND	200	42	100	Toluene			ND	100	15	100		
Chloroform	ND	100	17	100	1,2,3-Trichl	orobenzene		ND	200	20	100		
Chloromethane	ND	2000	290	100	1,2,4-Trichl	orobenzene		ND	200	18	100		
2-Chlorotoluene	ND	100	12	100	1,1,1-Trichl	oroethane		ND	100	25	100		
4-Chlorotoluene	ND	100	10	100	1,1,2-Trichl	oroethane		ND	100	24	100		
Dibromochloromethane	ND	200	20	100	1,1,2-Trichl	oro-1,2,2-Ti	rifluoroethane	ND	1000	47	100		
1,2-Dibromo-3-Chloropropane	ND	500	370	100	Trichloroeth			ND	200	18	100		
1,2-Dibromoethane	ND	100	45	100	Trichloroflu	oromethane		ND	1000	16	100		
Dibromomethane	ND	100	70	100	1,2,3-Trichl	oropropane		ND	200	65	100		
1,2-Dichlorobenzene	ND	100	13	100	1,2,4-Trime			ND	200	12	100		
1,3-Dichlorobenzene	ND	100	16	100	1,3,5-Trime			ND	200	9.9	100		
1,4-Dichlorobenzene	ND	100	15	100	Vinyl Aceta	te		ND	1000	750	100		
Dichlorodifluoromethane	ND	200	19	100	Vinyl Chlori	de		ND	100	21	100		
1,1-Dichloroethane	ND	100	16	100	p/m-Xylene			ND	200	20	100		
1,2-Dichloroethane	ND	100	17	100	o-Xylene			ND	100	11	100		
1,1-Dichloroethene	ND	100	14	100	Methyl-t-Bu	tyl Ether (M	TBE)	ND	200	13	100		
c-1,2-Dichloroethene	ND	100	28	100	Tert-Butyl A			ND	2000	1500	100		
t-1,2-Dichloroethene	ND	100	25	100	Diisopropyl	Ether (DIPE	E)	ND	100	25	100		
1,2-Dichloropropane	ND	100	27	100	Ethyl-t-Buty	•	,	ND	100	21	100		
1,3-Dichloropropane	ND	100	18	100	Tert-Amyl-M			ND	100	13	100		
2,2-Dichloropropane	ND	500	46	100	Ethanol	-		ND	50000	10000	100		
1,1-Dichloropropene	ND	200	22	100									
Surrogates:	<u>REC (%)</u>	<u>Control</u>	<u>Qual</u>		Surrogates:			<u>REC (%)</u>		<u>Q</u>	ual		
		Limits							Limits				
Dibromofluoromethane	97	79-133			1,2-Dichlor			98	71-155				
1,4-Bromofluorobenzene	102	80-120			Toluene-d8			101	80-120				

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

Date Received:

Work Order No:

Parsons, Inc. 100 West Walnut Street Pasa

Pasadena, CA 91124-0002						Prepara Method:	tion:				EP	A 503 8260E	5
						Units:						ug/k	g
Project: DFSP Norwalk	k / 747565	5									Page	e 6 of 7	7
Client Sample Number			Lab Sa Num			Date/Time Collected	Matrix	Instrument	Date Prepar		e/Time alyzed	QC Bat	ch ID
Method Blank			095-0 1	-025-20,73	33	N/A	Solid	GC/MS V V	10/29/*		/29/10 6:36	101029	L02
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentrati	ions >= to t	the N	/IDL but < RL,	if found, ar	e qualified wit	th a "J" flag	J.			
Parameter	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u> Q	ual	Parameter			<u>Result</u>	<u>RL</u>	MDL	DF	<u>Qual</u>
Acetone	ND	5000	640	100		c-1,3-Dichlo	ropropene		ND	100	18	100	
Benzene	ND	100	13	100		t-1,3-Dichlor			ND	200	190	100	
Bromobenzene	ND	100	21	100		Ethylbenzen	e		ND	100	15	100	
Bromochloromethane	ND	200	140	100		2-Hexanone			ND	2000	560	100	
Bromodichloromethane	ND	100	15	100		Isopropylber	nzene		ND	100	12	100	
Bromoform	ND	500	66	100		p-Isopropylte	oluene		ND	100	12	100	
Bromomethane	ND	2000	180	100		Methylene C	hloride		ND	1000	520	100	
2-Butanone	ND	2000	960	100		4-Methyl-2-F	Pentanone		ND	2000	200	100	
n-Butylbenzene	ND	100	22	100		Naphthalene	;		54	1000	33	100	J
sec-Butylbenzene	ND	100	10	100		n-Propylben	zene		ND	200	100	100	
tert-Butylbenzene	ND	100	12	100		Styrene			ND	100	21	100	
Carbon Disulfide	ND	1000	18	100		1,1,1,2-Tetra	achloroetha	ne	ND	100	33	100	
Carbon Tetrachloride	ND	100	32	100		1,1,2,2-Tetra	achloroetha	ne	ND	200	23	100	
Chlorobenzene	ND	100	15	100		Tetrachloroe	ethene		ND	100	17	100	
Chloroethane	ND	200	42	100		Toluene			20	100	15	100	
Chloroform	ND	100	17	100		1,2,3-Trichlo	probenzene		23	200	20	100	
Chloromethane	ND	2000	290	100		1,2,4-Trichlo	probenzene		22	200	18	100	J
2-Chlorotoluene	12	100	12	100 J		1,1,1-Trichlo	oroethane		ND	100	25	100	
4-Chlorotoluene	11	100	10	100 J		1,1,2-Trichlo			ND	100	24	100	
Dibromochloromethane	ND	200	20	100		1,1,2-Trichlo	oro-1,2,2-Ti	rifluoroethane		1000	47	100	
1,2-Dibromo-3-Chloropropane	ND	500	370	100		Trichloroeth	ene		ND	200	18	100	
1,2-Dibromoethane	ND	100	45	100		Trichlorofluc	romethane		ND	1000	16	100	
Dibromomethane	ND	100	70	100		1,2,3-Trichlo	propropane		ND	200	65	100	
1,2-Dichlorobenzene	ND	100	13	100		1,2,4-Trimet			32	200	12	100	-
1,3-Dichlorobenzene	ND	100	16	100		1,3,5-Trimet		9	13	200	9.9	100	J
1,4-Dichlorobenzene	ND	100	15	100		Vinyl Acetate			ND	1000	750	100	
Dichlorodifluoromethane	ND	200	19	100		Vinyl Chloric	le		ND	100	21	100	
1,1-Dichloroethane	ND	100	16	100		p/m-Xylene			49	200	20	100	
1,2-Dichloroethane	ND	100	17	100		o-Xylene			17	100	11	100	J
1,1-Dichloroethene	ND	100	14	100		Methyl-t-But		,	ND	200	13	100	
c-1,2-Dichloroethene	ND	100	28	100		Tert-Butyl A			ND	2000	1500	100	
t-1,2-Dichloroethene	ND	100	25	100		Diisopropyl I			ND	100	25	100	
1,2-Dichloropropane	ND	100	27	100		Ethyl-t-Butyl			ND	100	21	100	
1,3-Dichloropropane	ND	100	18	100		Tert-Amyl-N	lethyl Ether	(TAME)	ND	100	13	100	
2,2-Dichloropropane	ND	500	46	100		Ethanol			ND	50000	10000	100	
1,1-Dichloropropene	ND	200	22	100									
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	Qua	<u>al</u>		Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	<u>ual</u>	
Dibromofluoromethane	97	79-133				1,2-Dichloro	ethane-d4		97	71-155			
1,4-Bromofluorobenzene	102	80-120				Toluene-d8			100	80-120			
,	- —									-			

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 13 of 30

10/27/10

10-10-2159

Date Received:

Parsons, Inc. 100 West Walnut Street Pasa

100 West Walnut Stree Pasadena, CA 91124-0 Project: DFSP Norwalk	i	Work Order No:10-10-2159Preparation:EPA 5035Method:EPA 8260BUnits:ug/kgPage 7 of 7								5 3 9			
Client Sample Number			Lab Sar Numb	•		Date/Time Collected	Matrix	Instrument	Date Prepar		e/Time alyzed	QC Bate	ch ID
Method Blank			095-01-		0,760	N/A	Solid	GC/MS V V		10 11/	02/10 4:52	101101	L04
Comment(s): -Results were	evaluated to th	e MDL, c	oncentratio	ns >=	to the M	MDL but < RL,	if found, ar	e qualified wit	th a "J" flag	j.			
Parameter	<u>Result</u>	<u>RL</u>	MDL	DF	Qual	Parameter			Result	<u>RL</u>	MDL	DF	Qual
Acetone	ND	5000	640	100		c-1,3-Dichlo	ropropene		ND	100	18	100	
Benzene	ND	100	13	100		t-1,3-Dichlo	opropene		ND	200	190	100	
Bromobenzene	ND	100	21	100		Ethylbenzen	е		ND	100	15	100	
Bromochloromethane	ND	200	140	100		2-Hexanone			ND	2000	560	100	
Bromodichloromethane	ND	100	15	100		Isopropylber	nzene		ND	100	12	100	
Bromoform	ND	500	66	100		p-Isopropylte	oluene		ND	100	12	100	
Bromomethane	200	2000	180	100	J	Methylene C	hloride		ND	1000	520	100	
2-Butanone	ND	2000	960	100		4-Methyl-2-F	Pentanone		ND	2000	200	100	
n-Butylbenzene	ND	100	22	100		Naphthalene	9		37	1000	33	100	J
sec-Butylbenzene	ND	100	10	100		n-Propylben	zene		ND	200	100	100	
tert-Butylbenzene	ND	100	12	100		Styrene			ND	100	21	100	
Carbon Disulfide	ND	1000	18	100		1,1,1,2-Tetra	achloroetha	ne	ND	100	33	100	
Carbon Tetrachloride	ND	100	32	100		1,1,2,2-Tetra	achloroetha	ne	ND	200	23	100	
Chlorobenzene	ND	100	15	100		Tetrachloroe	ethene		ND	100	17	100	
Chloroethane	ND	200	42	100		Toluene			ND	100	15	100	
Chloroform	ND	100	17	100		1,2,3-Trichle	orobenzene		ND	200	20	100	
Chloromethane	ND	2000	290	100		1,2,4-Trichle	orobenzene		ND	200	18	100	
2-Chlorotoluene	ND	100	12	100		1,1,1-Trichle	proethane		ND	100	25	100	
4-Chlorotoluene	ND	100	10	100		1,1,2-Trichle	proethane		ND	100	24	100	
Dibromochloromethane	ND	200	20	100		1,1,2-Trichle	oro-1,2,2-Tr	ifluoroethane	ND	1000	47	100	
1,2-Dibromo-3-Chloropropane	ND	500	370	100		Trichloroeth	ene		ND	200	18	100	
1,2-Dibromoethane	ND	100	45	100		Trichlorofluc	oromethane		ND	1000	16	100	
Dibromomethane	ND	100	70	100		1,2,3-Trichle	propropane		ND	200	65	100	
1,2-Dichlorobenzene	ND	100	13	100		1,2,4-Trimet			ND	200	12	100	
1,3-Dichlorobenzene	ND	100	16	100		1,3,5-Trimet	hylbenzene	•	ND	200	9.9	100	
1,4-Dichlorobenzene	ND	100	15	100		Vinyl Acetat	е		ND	1000	750	100	
Dichlorodifluoromethane	ND	200	19	100		Vinyl Chloric	le		ND	100	21	100	
1,1-Dichloroethane	ND	100	16	100		p/m-Xylene			ND	200	20	100	
1,2-Dichloroethane	ND	100	17	100		o-Xylene			ND	100	11	100	
1,1-Dichloroethene	ND	100	14	100		Methyl-t-But			ND	200	13	100	
c-1,2-Dichloroethene	ND	100	28	100		Tert-Butyl A		,	ND	2000	1500	100	
t-1,2-Dichloroethene	ND	100	25	100		Diisopropyl	``	,	ND	100	25	100	
1,2-Dichloropropane	ND	100	27	100		Ethyl-t-Butyl			ND	100	21	100	
1,3-Dichloropropane	ND	100	18	100		Tert-Amyl-M	lethyl Ether	(TAME)	ND	100	13	100	
2,2-Dichloropropane 1,1-Dichloropropene	ND	500 200	46 22	100 100		Ethanol			ND	50000	10000	100	
	ND		22	100		_				_			
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qual</u>			<u>Surrogates:</u>			<u>REC (%)</u>	<u>Limits</u>	<u>Q</u>	<u>ual</u>	
Dibromofluoromethane	101	79-133				1,2-Dichloro	ethane-d4		103	71-155			
1,4-Bromofluorobenzene	101	80-120				Toluene-d8			101	80-120			

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 14 of 30

10/27/10

Date Received:

10/27/10

Parsons, Inc. 10 Pa

100 West Walnut Street					Work Ord	ler No:			10	-10-2159		
Pasadena, CA 91124-000	2				Preparation	on:			EF	PA 5030B		
					Method:				EPA 8260B (M) VPH			
					Units:			`úg/kg				
Project: DFSP Norwalk / 7	747565								Pa	age 1 of 1		
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
UV-5-28			10-10-2	2159-1-A	10/27/10 11:47	Solid	GC/MS UU	10/28/10	11/03/10 14:57	101103L02		
Parameter	<u>Result</u>	RL	DF	Qual	Parameter			Result	<u>RL DF</u>	Qual		
Aliphatic Hydrocarbons (C5-C8)	1400000	500000	5000		Aromatic Hydro	ocarbons	(C6-C8)	2100000		00		
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>1</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	Qual		
Toluene-d8	105	75-125			Toluene-d8-TF	ווחמ		104	75-125			
	100	75-125			Toluene-do-TP	ΥΠ		104	75-125			
UV-12-30	100	73-123	10-10-2	2159-3-B	10/27/10 13:19	Solid	GC/MS UU		11/03/10 15:24	101103L02		
	Result	<u>RL</u>	10-10-2	2 159-3-B	10/27/10		GC/MS UU		11/03/10	101103L02 Qual		
UV-12-30					10/27/10 13:19	Solid		10/28/10	11/03/10 15:24	Qual		
UV-12-30 Parameter	<u>Result</u>	<u>RL</u> 10000 <u>Control</u>	DE	Qual	10/27/10 13:19 Parameter	Solid		10/28/10	11/03/10 15:24 RL DF 500 10 Control 000000000000000000000000000000000000	Qual		
UV-12-30 Parameter Aliphatic Hydrocarbons (C5-C8)	<u>Result</u> 52000	<u>RL</u> 10000	<u>DF</u> 100	Qual	10/27/10 13:19 Parameter Aromatic Hydro	Solid		10/28/10 <u>Result</u> 15000	11/03/10 15:24 RL DE 500 10	Qual 0		
UV-12-30 Parameter Aliphatic Hydrocarbons (C5-C8) Surrogates:	<u>Result</u> 52000 <u>REC (%)</u>	<u>RL</u> 10000 <u>Control</u> <u>Limits</u>	<u>DF</u> 100 <u>Qua</u>	Qual	10/27/10 13:19 <u>Parameter</u> Aromatic Hydro <u>Surrogates:</u>	Solid		10/28/10 <u>Result</u> 15000 <u>REC (%)</u> 103	11/03/10 15:24 RL DE 500 10 Control Initis	Qual 0		
UV-12-30 Parameter Aliphatic Hydrocarbons (C5-C8) Surrogates: Toluene-d8	<u>Result</u> 52000 <u>REC (%)</u> 103	RL 10000 Control Limits 75-125	DF 100 Qua 099-13	Qual	10/27/10 13:19 Parameter Aromatic Hydro Surrogates: Toluene-d8-TF N/A	Solid ocarbons PPH	(C6-C8)	10/28/10 <u>Result</u> 15000 <u>REC (%)</u> 103	11/03/10 15:24 RL DF 500 10 Control 10 Limits 75-125 11/03/10	Qual 0 Qual		
UV-12-30 Parameter Aliphatic Hydrocarbons (C5-C8) Surrogates: Toluene-d8 Method Blank	<u>Result</u> 52000 <u>REC (%)</u>	<u>RL</u> 10000 <u>Control</u> <u>Limits</u>	<u>DF</u> 100 <u>Qua</u>	Qual	10/27/10 13:19 Parameter Aromatic Hydro Surrogates: Toluene-d8-TF	Solid ocarbons PPH Solid	(C6-C8) GC/MS UU	10/28/10 Result 15000 REC (%) 103 11/03/10	11/03/10 15:24 RL DF 500 10 Control 10 Limits 75-125 11/03/10 13:34	Qual 0 Qual 101103L02 Qual		
UV-12-30 Parameter Aliphatic Hydrocarbons (C5-C8) Surrogates: Toluene-d8 Method Blank Parameter	Result 52000 REC (%) 103 Result	RL 10000 Control Limits 75-125 RL	DF 100 Qua 099-13 DF	Qual 1 -035-69 Qual	10/27/10 13:19 Parameter Aromatic Hydro Surrogates: Toluene-d8-TF N/A Parameter	Solid ocarbons PPH Solid	(C6-C8) GC/MS UU	10/28/10 Result 15000 REC (%) 103 11/03/10 Result	11/03/10 15:24 RL DE 500 10 Control 10 Limits 75-125 11/03/10 13:34 RL DE 500 10	Qual 0 Qual 101103L02 Qual		

DF - Dilution Factor , RL - Reporting Limit , Qual - Qualifiers

n M

Parsons, Inc. 100 West Walnut Street	Date Received: Work Order No:	10/27/10 10-10-2159
Pasadena, CA 91124-0002	Preparation:	EPA 3550B
	Method:	EPA 8015B (M)

Project DFSP Norwalk / 747565

Quality Control Sample ID	Matrix	Matrix Instrument		A	Date nalyzed	MS/MSD Batch Number	
UV-12-30	Solid	GC 27	10/30/10	1	1/01/10	101030S02	
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers	
TPH as JP5	516	511	64-130	1	0-15	3	

RPD - Relative Percent Difference, CL - Control Limit

95-5494 · FAX: (714) 894-7501

Parsons, Inc.	Date Received:	10/27/10
100 West Walnut Street	Work Order No:	10-10-2159
Pasadena, CA 91124-0002	Preparation:	EPA 3550B
	Method:	EPA 8015B (M) EPH

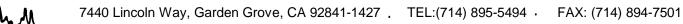
Project DFSP Norwalk / 747565

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
UV-12-30	Solid	GC 50	10/28/10		10/29/10	101028S01	
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers	
Aliphatic Hydrocarbons (C9-C18)	0	0	40-140	35	0-50	3	
Aliphatic Hydrocarbons (C19-C32)	107	99	40-140	8	0-50		
Aromatic Hydrocarbons (C9-C16)	79	54	40-140	15	0-50		
Aromatic Hydrocarbons (C17-C32)	105	99	40-140	6	0-50		

RPD - Relative Percent Difference, CL - Control Limit

ha 7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 ·

FAX: (714) 894-7501



Date Received: Work Order No: Preparation: Method: 10/27/10 10-10-2159 EPA 5030B EPA 8260B (M) VPH

Project DFSP Norwalk / 747565

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		MS/MSD Batch Number	
UV-12-30	Solid	GC/MS UU	10/28/10		11/03/10	101103S01	
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers	
Aliphatic Hydrocarbons (C5-C8)	25	26	65-135	1	0-30	3	
Aromatic Hydrocarbons (C6-C8)	19	17	65-135	8	0-30	3	

RPD - Relative Percent Difference, CL - Control Limit

Parsons, Inc.
100 West Walnut Street
Pasadena, CA 91124-0002

Date Received: Work Order No: Preparation: Method:

N/A 10-10-2159 EPA 3550B EPA 8015B (M)

Project: DFSP Norwalk / 747565

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch
099-12-295-43	Solid	GC 27	10/30/10	10/30/10	101030B02	
Parameter	<u>LCS %</u>	REC LCSD	<u>%REC %F</u>	REC CL R	PD RPD CL	Qualifiers
TPH as JP5	95	91	7	7 5-123 4	0-12	

RPD - Relative Percent Difference, CL - Control Limit

Mulhan

Date Received: Work Order No: Preparation: Method: N/A 10-10-2159 EPA 3550B EPA 8015B (M) EPH

Project: DFSP Norwalk / 747565

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD Bate Number	:h
099-13-033-26	Solid	GC 50	10/28/10	10/29	9/10	101028L01	
Parameter	LCS %	REC LCSE	<u>%REC </u> %	6REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Aliphatic Hydrocarbons (C9-C18)	128	11	3	40-140	13	0-25	
Aliphatic Hydrocarbons (C19-C32)	108	9	2	40-140	15	0-25	
Aromatic Hydrocarbons (C9-C16)	95	9	C	40-140	6	0-25	
Aromatic Hydrocarbons (C17-C32)	95	8	9	40-140	6	0-25	

RPD - Relative Percent Difference, CL - Control Limit

Mulhma_

N/A

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received: Work Order No: 10-10-2159 Preparation: EPA 5035 Method: EPA 8015B (M)

Project: DFSP Norwalk / 747565

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	h
099-12-285-3,095	Solid	GC 29	11/01/10	11/01/10	101101B01	
Parameter	LCS %	REC LCSD	<u>%REC %R</u>	REC CL RP	D RPD CL	Qualifiers
TPH as Gasoline	113	113	5	5-139 0	0-18	

RPD - Relative Percent Difference, CL - Control Limit

hM

Parsons, Inc.
100 West Walnut Street
Pasadena, CA 91124-0002

Date Received:	N/A
Work Order No:	10-10-2159
Preparation:	EPA 5035
Method:	EPA 8015B (M)

Project: DFSP Norwalk / 747565

Quality Control Sample ID	Matrix	Instrument	Da Prepa		Date alyzed	LCS/LCSD Batc Number	h
099-12-285-3,107	Solid	GC 18	11/01	/10 11/	02/10	101101B03	
Parameter	LCS %	<u> KREC LCS</u>	D %REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	90		91	55-139	2	0-18	

RPD - Relative Percent Difference, CL - Control Limit

Date Received: Work Order No: Preparation: Method: N/A 10-10-2159 EPA 5035 EPA 8260B

Project: DFSP Norwalk / 747565

Quality Control Sample ID	Matrix	Instrument	Date ment Prepared		ite yzed	LCS/LCSD Batch Number		
095-01-025-20,715	Solid	GC/MS V V	10/28/10	10/29/	/10	101028L04		
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>	
Benzene	96	97	80-120	73-127	1	0-20		
Carbon Tetrachloride	95	93	65-137	53-149	1	0-20		
Chlorobenzene	97	98	80-120	73-127	2	0-20		
1,2-Dibromoethane	104	104	80-120	73-127	0	0-20		
1,2-Dichlorobenzene	94	95	80-120	73-127	1	0-20		
1,2-Dichloroethane	102	104	80-120	73-127	2	0-20		
1,1-Dichloroethene	96	96	68-128	58-138	0	0-20		
Ethylbenzene	96	98	80-120	73-127	2	0-20		
Toluene	96	99	80-120	73-127	3	0-20		
Trichloroethene	89	93	80-120	73-127	5	0-20		
Vinyl Chloride	105	103	67-127	57-137	2	0-20		
Methyl-t-Butyl Ether (MTBE)	101	99	70-124	61-133	2	0-20		
Tert-Butyl Alcohol (TBA)	101	107	73-121	65-129	6	0-20		
Diisopropyl Ether (DIPE)	100	97	69-129	59-139	3	0-20		
Ethyl-t-Butyl Ether (ETBE)	102	99	70-124	61-133	3	0-20		
Tert-Amyl-Methyl Ether (TAME)	99	100	74-122	66-130	1	0-20		
Ethanol	93	104	51-135	37-149	11	0-27		

 Total number of LCS compounds :
 17

 Total number of ME compounds :
 0

 Total number of ME compounds allowed :
 1

 LCS ME CL validation result :
 Pass

n M

RPD - Relative Percent Difference, CL - Control Limit

Date Received: Work Order No: Preparation: Method: N/A 10-10-2159 EPA 5035 EPA 8260B

Project: DFSP Norwalk / 747565

Quality Control Sample ID Matrix		Instrument	Date Prepared	Da Anal		LCS/LCSD Batch Number		
095-01-025-20,733	Solid	GC/MS V V	10/29/10	10/29/10 10/29/10		101029L02		
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	RPD	RPD CL	<u>Qualifiers</u>	
Benzene	96	96	80-120	73-127	0	0-20		
Carbon Tetrachloride	96	96	65-137	53-149	0	0-20		
Chlorobenzene	100	99	80-120	73-127	0	0-20		
1,2-Dibromoethane	104	105	80-120	73-127	1	0-20		
1,2-Dichlorobenzene	99	97	80-120	73-127	2	0-20		
1,2-Dichloroethane	103	102	80-120	73-127	0	0-20		
1,1-Dichloroethene	94	94	68-128	58-138	0	0-20		
Ethylbenzene	100	99	80-120	73-127	1	0-20		
Toluene	98	98	80-120	73-127	0	0-20		
Trichloroethene	90	89	80-120	73-127	2	0-20		
Vinyl Chloride	102	101	67-127	57-137	1	0-20		
Methyl-t-Butyl Ether (MTBE)	99	99	70-124	61-133	0	0-20		
Tert-Butyl Alcohol (TBA)	101	99	73-121	65-129	2	0-20		
Diisopropyl Ether (DIPE)	93	94	69-129	59-139	1	0-20		
Ethyl-t-Butyl Ether (ETBE)	100	101	70-124	61-133	1	0-20		
Tert-Amyl-Methyl Ether (TAME)	103	103	74-122	66-130	0	0-20		
Ethanol	83	82	51-135	37-149	2	0-27		

 Total number of LCS compounds :
 17

 Total number of ME compounds :
 0

 Total number of ME compounds allowed :
 1

 LCS ME CL validation result :
 Pass

n M

RPD - Relative Percent Difference, CL - Control Limit

Date Received: Work Order No: Preparation: Method: N/A 10-10-2159 EPA 5035 EPA 8260B

Project: DFSP Norwalk / 747565

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD Batch Number		
095-01-025-20,760	Solid	GC/MS V V	11/01/10	11/02	/10	101101L	04	
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>	
Benzene	97	98	80-120	73-127	1	0-20		
Carbon Tetrachloride	87	88	65-137	53-149	2	0-20		
Chlorobenzene	97	98	80-120	73-127	1	0-20		
1,2-Dibromoethane	103	105	80-120	73-127	2	0-20		
1,2-Dichlorobenzene	95	96	80-120	73-127	2	0-20		
1,2-Dichloroethane	103	105	80-120	73-127	2	0-20		
1,1-Dichloroethene	93	95	68-128	58-138	2	0-20		
Ethylbenzene	97	97	80-120	73-127	0	0-20		
Toluene	97	97	80-120	73-127	1	0-20		
Trichloroethene	87	88	80-120	73-127	1	0-20		
Vinyl Chloride	109	109	67-127	57-137	0	0-20		
Methyl-t-Butyl Ether (MTBE)	96	99	70-124	61-133	3	0-20		
Tert-Butyl Alcohol (TBA)	101	91	73-121	65-129	10	0-20		
Diisopropyl Ether (DIPE)	96	97	69-129	59-139	1	0-20		
Ethyl-t-Butyl Ether (ETBE)	99	101	70-124	61-133	2	0-20		
Tert-Amyl-Methyl Ether (TAME)	98	100	74-122	66-130	2	0-20		
Ethanol	102	83	51-135	37-149	21	0-27		

 Total number of LCS compounds :
 17

 Total number of ME compounds :
 0

 Total number of ME compounds allowed :
 1

 LCS ME CL validation result :
 Pass

n M

RPD - Relative Percent Difference, CL - Control Limit

Date Received: Work Order No: Preparation: Method: N/A 10-10-2159 EPA 5030B EPA 8260B (M) VPH

Project: DFSP Norwalk / 747565

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batc Number	h
099-13-035-69	Solid	GC/MS UU	11/03/10	11/03/10	101103L02	
Parameter	LCS	<u>%REC LCSD</u>	<u>%REC %F</u>	REC CL RPD	RPD CL	Qualifiers
Aliphatic Hydrocarbons (C5-C8)	10	4 88	e	65-135 18	0-30	
Aromatic Hydrocarbons (C6-C8)	10	1 100) 6	65-135 1	0-30	

RPD - Relative Percent Difference, CL - Control Limit

hM

Glossary of Terms and Qualifiers

Work Order Number: 10-10-2159

Qualifier	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution,
·	therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The
	associated method blank surrogate spike compound was in control and, therefore, the
	sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out
	of control due to matrix interference. The associated LCS and/or LCSD was in control
_	and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD
-	was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and,
	hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
J	Analyte was detected at a concentration below the reporting limit and above the
5	laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter
~	concentration in the sample exceeding the spike concentration by a factor of four or
	greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

	. 1			,		4	o nyes	1,-+21	<u> </u>	U.D.	5	×								l I		
N N				A			rost	2 apr	5 (1),9 2	91	ગ્ર	×							5	3		06/01/10 Revision
ы Ш				bie	[LIACHE	Ħc	,	X	X	×	×				1359	1423		1/10 R
2			(TN	2					[E-OT] (9)	HqT -	ήA		-					 -	Time:	Time:	Time:	.0/90
0			6): (PR	Kinnebrew			Air - VOCs (T0-14A) or (T0-15)		liΑ						-			0		1		
UST	of 9	 Q	SAMPLER(S): (PRINT)				Cr(VI) [7196 or 7199 or 218.6]		Cu								レング	Ľ	<u>_</u>			
Ы Ш	27	P.O. NO.:	SAMF	Quîn	L∑.			()	X74710103) sli	sləM S	21								Ó.	12		
0 Z	10.27.10				ANAL				(0728) 10 (011	58) sAl	٧Ч								Date: 10-27-10	Date:	Date	
CHAIN OF CUSTODY RECORD	e e		5)8) sB;									4			
ប	Date_ Page_		147565		REQUESTED				(1808) s													
			147		ES) s00								 				
		BER	义		l S	<u> </u>	(9	£03) qər	Terra Core P										R	1		
	M	WUN /	101	5	L L L				tes (8260)									7	R	12)		
		CLIENT PROJECT NAME / NUMBER	<u>Xbrwalk</u> ^{Act:}	lucas	1) ,	o (0928) 3871	(8) sO		×	×	×	×		_		لأنب			
		ECT N	- N - C			<u> </u>) 4					~						33	2		tively.
		PRO.	DFSP- ROJECT CON	Mary	ſ	(#		10 (95-)-	36-5 31 DRO or (C6			×	×	×	×			 		(Lion)	ation)	Jedseu
)			Z					DEO 10			メ	×	×	X			 		MARtill NV V	e/Affili	opies
								T		II-I PIG	-+		• 1							Dature	nature	ilow c
р П				9/124			Ш	\vdash		viese	-+								(Signatu	Received by: (Signature/Affiliation) のれいい	Received by: (Signature/Affiliation	and Ye
ທີ່	Ш			6			LOG CODE												/ed by	/ed by	/ed by	reen a
<u>Srie</u>	, Suite						2	_	pavie	brese								 	Received by:	Receiv	Receiv	the G
atc	enter Circle 20-857									ġë	CONT	10	00	æ	0							side of
<u>N</u>	NorCal Service Center 5063 Commercial Circle, Suite H Concord, CA 94520-8577 (925) 689-9022					X STANDARD					אאואוא	Soil			->							erse :
at	NorCal Service (5063 Commercia Concord, CA 94 (925) 689-9022		-	A		STAI					≥	\sim			a		-			~		lient. the rev
al	lorCal 063 C concol 925) 6		100	STATE							TIME	1147	12.18	13(9	349				Ф			v to C
int			Street	ŝ		Ĕ				DN		i i	2	4				1	Nev.			Yello Printe
Ĕ						□_72 HR				SAMPLING		0							Jegn			en and Cs are
0 U	427		(u u							S	DATE	J-L	_		>			-	er (, Gree
ž	841-1		tun alnut	8	E-MAIL:	변						10.27.10								Res and		report of 2 of
Ш	SoCal Laboratory 7440 Lincoln Way Garden Grove, CA 92841-1427 (714) 895-5494	5			Ч	48 HR	Q				· · · ·							 7	Juli	Ð		h final nd 2 c
C C C	SoCal Laboratory 7440 Lincoln Way Garden Grove, CA (714) 895-5494	Parsons		Sac	2	<u>۳</u>	GLOBAL ID												J	×		lite wit Jes 1 a
en	al Lat D Lino den G 895-	d d	001	5	83]24 HR	GLG				2	9		0	-32				ature) A	(interior)	iture)	N: Wh
SCI	SoC 744(Gard (714				5	∟ ⊔́		TIONS				5-28	м О	2 - 3					Signe	by: (Signature)	Signe	3UTIO
Calscience Environmental Laboratories,					99	AY TIN	EDF	STRUC		6	õ	- 5	UV-2-30	UV-12-30	01-NN				d by:	Ì	d by: (DISTRIBUTION: White with final report, Green and Yellow to Client. Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.
		LABORATORY CLIENT:	ESS:		626-665-8336	TURNAROUND TIME] соегт ерг	SPECIAL INSTRUCTIONS				22	く	5	3				Relinquished by: (Signature)	Remodent	Relinquišhed by: (Signature)	급급
		LABOF	ADDRESS	ΥTΩ	LEL.			SPECI		LAB I	NLY N	~	4	er.	£				Reling	Relf	Reling	
. at 1	,	L	<u> </u>	L	L					Í	~					L .,		 			L	L

aps second

110

l

¶स म्

/

e p

4

Page 28 of 30

The selection of structure

<i>2</i>				Page 2	29 of 30
Calscience ·	WOR	K ORDER #:	10-10	- 2 /	\$9
Laboratories, inc.	MPLE REC	EIPT FOR	RM c	ooler (of /
CLIENT: Parsons				10/27	
TEMPERATURE: Thermometer ID:	SC1 (Criteria: 0.0 °C -	- 6.0 °C, not frozen	ı)		
Temperature $l \cdot 8^{\circ}C + 0$.5°C (CF) = 2	<u>3</u> °C 🛛	Blank	□ Sample	
☐ Sample(s) outside temperature crite	eria (PM/APM contacte	ed by:).		•	
□ Sample(s) outside temperature crite	eria but received on ice	/chilled on same da	ay of samplir	ng.	
□ Received at ambient temperature	e, placed on ice for	transport by Co	urier.		
-	Filter			Initial:	6L
CUSTODY SEALS INTACT:					
□ Cooler □ [□ No (Not Intact)	☑ Not Present	□ N/A		hC
□ Sample □ [□ No (Not Intact)	Not Present		Initial:	<u>P</u> 2_
SAMPLE CONDITION:	·	· · · · · · · · · · · · · · · · · · ·	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with same				
COC document(s) received complete					
□ Collection date/timè, matrix, and/or # of					
□ No analysis requested. □ Not reling		-			
Sampler's name indicated on COC			┏∕.		
Sample container label(s) consistent					
Sample container(s) intact and good of					
Proper containers and sufficient volum					
Analyses received within holding time					
pH / Residual Chlorine / Dissolved Su	lfide received within	24 hours			₽¥
Proper preservation noted on COC or	sample container		-WSC		
□ Unpreserved vials received for Volat	iles analysis		10-27-10		•
Volatile analysis container(s) free of h	eadspace				
Tedlar bag(s) free of condensation CONTAINER TYPE:					
Solid: 40zCGJ 80zCGJ 160	zCGJ ØŚleeve (≤) ⊠ÉnCores	® □TerraC	Cores [®] □	
Water: □VOA □VOAh □VOAna₂ [1AGB s
□500AGB □500AGJ □500AGJs	□250AGB □250C	GB □250CGBs	□1PB □]500PB □50	0PB na
□250PB □250PBn □125PB □125	PBznna □100PJ []100₽J na₂ □	¤	□_	
Air: □Tedlar [®] □Summa [®] Other: Container: C: Clear A: Amber P: Plastic G: Glas Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na	□ Trip Bla s J: Jar B: Bottle Z: Ziplo	nk Lot#: c/Resealable Bag E: E	_ Labeled/C	hecked by: _ eviewed by: <u>/</u>	psc

SOP T100_090 (09/13/10)

Ranjit Clarke

From:	Lucas, Mary [Mary.Lucas@parsons.com]
Sent:	Thursday, October 28, 2010 11:30 AM
То:	Ranjit Clarke
Subject:	RE: DFSP Norwalk / 747565 (10/27/10)

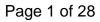
Thanks Ranjit-

Let's just analyze UV-5 and UV-12 for EPH/VPH breakdown. $\ensuremath{\mathsf{M}}$

From: Ranjit Clarke [mailto:RClarke@calscience.com] Sent: Thursday, October 28, 2010 10:03 AM To: Lucas, Mary Subject: COC: DFSP Norwalk / 747565 (10/27/10)

Mary,

Attached is the COC for the samples collected on 10/27/10. Also attached are the RL/MDL lists for the EPH, VPH and Carbon Chain we discussed. Often "TPH Fractionation" refers to the EPH/VPH breakdown. Please check with the regulator to see if you require the EPH/VPH (aromatic/aliphatic breakdown) or if a simple carbon chain would suffice. The carbon chain would only be \$55 while the EPA/VPH combo would be approximately \$300.


Thanks,

Ranjit Clarke Project Manager Calscience Environmental Laboratories, Inc. 7440 Lincoln Way Garden Grove, CA 92841-1427 Phone: 714-895-5494 x222 Fax: 714-894-7501 <u>RClarke@calscience.com</u>

PRIVACY NOTICE:

This email (and/or the documents attached to it) is intended only for the use of the individual or entity to which it is addressed and may contain information that is privileged, confidential, or exempt from disclosure under applicable Federal or State law. If the reader of this message is not the intended recipient or the employee or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone or else to arrange for the return of the documents.

Supplemental Report 1

January 10, 2011

Mary Lucas Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

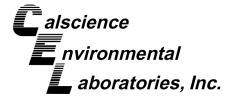
Subject: Calscience Work Order No.: 10-11-1740 Client Reference: DFSP-Norwalk / VMP

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/22/2010 and analyzed in accordance with the attached chain-of-custody.


Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.


Sincerely,

Ranjit F. J. Clarke

Calscience Environmental Laboratories, Inc. Ranjit Clarke Project Manager

NELAP ID: 03220CA · DoD-ELAP ID: L10-41 · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Work Order Case Narrative

Project Name: Calscience Work Order Number: DFSP-Norwalk / VMP 10-11-1740

1. Unit Conversion:

The original report for this SDG submitted all sample results in ppb (v/v) units. The results in this supplemental report are submitted in ug/L. No other changes have been made to the results previously reported.

Page 3 of 28

A DECORDANCE

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:	
Work Order No:	
Preparation:	
Method:	
Units:	

11/22/10
10-11-1740
N/A
EPA TO-15
ug/L
Page 1 of 19

Client Sample Number		Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy		QC Batch ID	
VMP-32-05-111910			10-11-1740-1-A		11/19/10 12:30	Air	GC/MS ZZ	N/A	11/23 19:3		101123L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	<u>RL</u>	DF	<u>Qual</u>
Acetone	0.031	0.012	2.45		t-1,3-Dichlorop	propene		ND	0.011	2.45	
Benzene	ND	0.0039	2.45		Ethyl-t-Butyl E	ther (ETBE	E)	ND	0.020	2.45	
Benzyl Chloride	ND	0.019	2.45		Ethylbenzene			ND	0.0053	2.45	
Bromodichloromethane	ND	0.0082	2.45		4-Ethyltoluene			ND	0.0060	2.45	
Bromoform	ND	0.013	2.45		Hexachloro-1,	3-Butadien	е	ND	0.039	2.45	
Bromomethane	ND	0.0048	2.45		2-Hexanone			ND	0.015	2.45	
2-Butanone	ND	0.011	2.45		Methyl-t-Butyl	Ether (MTI	BE)	ND	0.018	2.45	
Carbon Disulfide	ND	0.015	2.45		Methylene Chl	oride		ND	0.043	2.45	
Carbon Tetrachloride	ND	0.0077	2.45		4-Methyl-2-Pe	ntanone		ND	0.015	2.45	
Chlorobenzene	ND	0.0056	2.45		o-Xylene			ND	0.0053	2.45	
Chloroethane	ND	0.0032	2.45		p/m-Xylene			ND	0.021	2.45	
Chloroform	ND	0.0060	2.45		Styrene			ND	0.016	2.45	
Chloromethane	ND	0.0025	2.45		Tert-Amyl-Met	hyl Ether (TAME)	ND	0.020	2.45	
Dibromochloromethane	ND	0.010	2.45		Tert-Butyl Alco	ohol (TBA)		ND	0.015	2.45	
Dichlorodifluoromethane	ND	0.0061	2.45		Tetrachloroeth	ene		0.11	0.0083	2.45	
Diisopropyl Ether (DIPE)	ND	0.020	2.45		Toluene			ND	0.0046	2.45	
1,1-Dichloroethane	ND	0.0050	2.45		Trichloroethen	е		ND	0.0066	2.45	
1,1-Dichloroethene	ND	0.0049	2.45		Trichlorofluoro	methane		ND	0.014	2.45	
1,2-Dibromoethane	ND	0.0094	2.45		1,1,2-Trichlord	-1,2,2-Trif	luoroethane	ND	0.028	2.45	
Dichlorotetrafluoroethane	ND	0.034	2.45		1,1,1-Trichlord	ethane		ND	0.0067	2.45	
1,2-Dichlorobenzene	ND	0.0074	2.45		1,1,2-Trichlord	ethane		ND	0.0067	2.45	
1,2-Dichloroethane	ND	0.0050	2.45		1,3,5-Trimethy	lbenzene		ND	0.0060	2.45	
1,2-Dichloropropane	ND	0.0057	2.45		1,1,2,2-Tetrac	hloroethan	е	ND	0.017	2.45	
1,3-Dichlorobenzene	ND	0.0074	2.45		1,2,4-Trimethy	lbenzene		ND	0.018	2.45	
1,4-Dichlorobenzene	ND	0.0074	2.45		1,2,4-Trichlord	benzene		ND	0.036	2.45	
c-1,3-Dichloropropene	ND	0.0056	2.45		Vinyl Acetate			ND	0.017	2.45	
c-1,2-Dichloroethene	ND	0.0049	2.45		Vinyl Chloride			ND	0.0031	2.45	
t-1,2-Dichloroethene	ND	0.0049	2.45								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	95	57-129			1,2-Dichloroet	hane-d4		93	47-137		
Toluene-d8	91	78-156			,						

Page 4 of 28

Sonelac H

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:
Work Order No:
Preparation:
Method:
Units:

11/22/10
10-11-1740
N/A
EPA TO-15
ug/L
Page 2 of 19

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Matrix Instrument		Date/Time Analyzed		QC Batch ID
VMP-32-15-111910			10-11-1740-2-A		11/19/10 12:35	Air	GC/MS ZZ	N/A	11/23 20:2		101123L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Acetone	0.15	0.011	2.37		t-1,3-Dichlorop	propene		ND	0.011	2.37	
Benzene	ND	0.0038	2.37		Ethyl-t-Butyl E	ther (ETBE	Ξ)	ND	0.020	2.37	
Benzyl Chloride	ND	0.018	2.37		Ethylbenzene			0.0064	0.0051	2.37	
Bromodichloromethane	ND	0.0079	2.37		4-Ethyltoluene			ND	0.0058	2.37	
Bromoform	ND	0.012	2.37		Hexachloro-1,3	3-Butadien	е	ND	0.038	2.37	
Bromomethane	ND	0.0046	2.37		2-Hexanone			ND	0.015	2.37	
2-Butanone	0.028	0.010	2.37		Methyl-t-Butyl	Ether (MTI	BE)	ND	0.017	2.37	
Carbon Disulfide	ND	0.015	2.37		Methylene Chl	oride		ND	0.041	2.37	
Carbon Tetrachloride	ND	0.0075	2.37		4-Methyl-2-Pe	ntanone		ND	0.015	2.37	
Chlorobenzene	ND	0.0055	2.37		o-Xylene			0.015	0.0051	2.37	
Chloroethane	ND	0.0031	2.37		p/m-Xylene			0.024	0.021	2.37	
Chloroform	ND	0.0058	2.37		Styrene			ND	0.015	2.37	
Chloromethane	ND	0.0024	2.37		Tert-Amyl-Met	hyl Ether (TAME)	ND	0.020	2.37	
Dibromochloromethane	ND	0.010	2.37		Tert-Butyl Alco	ohol (TBA)		ND	0.014	2.37	
Dichlorodifluoromethane	ND	0.0059	2.37		Tetrachloroeth	ene		0.31	0.0080	2.37	
Diisopropyl Ether (DIPE)	ND	0.020	2.37		Toluene			0.0067	0.0045	2.37	
1,1-Dichloroethane	ND	0.0048	2.37		Trichloroethen	е		ND	0.0064	2.37	
1,1-Dichloroethene	ND	0.0047	2.37		Trichlorofluoro	methane		ND	0.013	2.37	
1,2-Dibromoethane	ND	0.0091	2.37		1,1,2-Trichlord	-1,2,2-Trif	luoroethane	ND	0.027	2.37	
Dichlorotetrafluoroethane	ND	0.033	2.37		1,1,1-Trichlord	ethane		ND	0.0065	2.37	
1,2-Dichlorobenzene	ND	0.0071	2.37		1,1,2-Trichlord	ethane		ND	0.0065	2.37	
1,2-Dichloroethane	ND	0.0048	2.37		1,3,5-Trimethy	lbenzene		ND	0.0058	2.37	
1,2-Dichloropropane	ND	0.0055	2.37		1,1,2,2-Tetrac	hloroethan	е	ND	0.016	2.37	
1,3-Dichlorobenzene	ND	0.0071	2.37		1,2,4-Trimethy	lbenzene		ND	0.017	2.37	
1,4-Dichlorobenzene	ND	0.0071	2.37		1,2,4-Trichlord	benzene		ND	0.035	2.37	
c-1,3-Dichloropropene	ND	0.0054	2.37		Vinyl Acetate			ND	0.017	2.37	
c-1,2-Dichloroethene	ND	0.0047	2.37		Vinyl Chloride			ND	0.0030	2.37	
t-1,2-Dichloroethene	ND	0.0047	2.37		-						
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	93	57-129			1,2-Dichloroetl	hane-d4		94	47-137		
Toluene-d8	92	78-156			.,						
	02	10-100									

hM

Page 5 of 28

Sonelac H

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:	
Work Order No:	
Preparation:	
Method:	
Units:	

11/22/10
10-11-1740
N/A
EPA TO-15
ug/L
Page 3 of 19

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analy		QC Batch ID
VMP-33-05-111910			10-11-1740-3-A		11/19/10 13:20	Air	GC/MS ZZ	N/A	11/23 21:1		101123L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Acetone	ND	0.012	2.54		t-1,3-Dichlorop	ropene		ND	0.012	2.54	
Benzene	ND	0.0041	2.54		Ethyl-t-Butyl Et	ther (ETBE	=)	ND	0.021	2.54	
Benzyl Chloride	ND	0.020	2.54		Ethylbenzene			ND	0.0055	2.54	
Bromodichloromethane	ND	0.0085	2.54		4-Ethyltoluene			ND	0.0062	2.54	
Bromoform	ND	0.013	2.54		Hexachloro-1,3	B-Butadien	е	ND	0.041	2.54	
Bromomethane	ND	0.0049	2.54		2-Hexanone			ND	0.016	2.54	
2-Butanone	ND	0.011	2.54		Methyl-t-Butyl	Ether (MTI	3E)	ND	0.018	2.54	
Carbon Disulfide	ND	0.016	2.54		Methylene Chl	oride		ND	0.044	2.54	
Carbon Tetrachloride	ND	0.0080	2.54		4-Methyl-2-Per	ntanone		ND	0.016	2.54	
Chlorobenzene	ND	0.0058	2.54		o-Xylene			ND	0.0055	2.54	
Chloroethane	ND	0.0034	2.54		p/m-Xylene			ND	0.022	2.54	
Chloroform	ND	0.0062	2.54		Styrene			ND	0.016	2.54	
Chloromethane	ND	0.0026	2.54		Tert-Amyl-Met	hyl Ether (ΓΑΜΕ)	ND	0.021	2.54	
Dibromochloromethane	ND	0.011	2.54		Tert-Butyl Alco	hol (TBA)		ND	0.015	2.54	
Dichlorodifluoromethane	ND	0.0063	2.54		Tetrachloroeth	ene		ND	0.0086	2.54	
Diisopropyl Ether (DIPE)	ND	0.021	2.54		Toluene			0.0057	0.0048	2.54	
1,1-Dichloroethane	ND	0.0051	2.54		Trichloroethen	е		ND	0.0068	2.54	
1,1-Dichloroethene	ND	0.0050	2.54		Trichlorofluoro	methane		ND	0.014	2.54	
1,2-Dibromoethane	ND	0.0098	2.54		1,1,2-Trichloro	-1,2,2-Trif	uoroethane	ND	0.029	2.54	
Dichlorotetrafluoroethane	ND	0.036	2.54		1,1,1-Trichloro	ethane		ND	0.0069	2.54	
1,2-Dichlorobenzene	ND	0.0076	2.54		1,1,2-Trichloro	ethane		ND	0.0069	2.54	
1,2-Dichloroethane	ND	0.0051	2.54		1,3,5-Trimethy	lbenzene		ND	0.0062	2.54	
1,2-Dichloropropane	ND	0.0059	2.54		1,1,2,2-Tetracl	nloroethan	Э	ND	0.017	2.54	
1,3-Dichlorobenzene	ND	0.0076	2.54		1,2,4-Trimethy	lbenzene		ND	0.019	2.54	
1,4-Dichlorobenzene	ND	0.0076	2.54		1,2,4-Trichloro	benzene		ND	0.038	2.54	
c-1,3-Dichloropropene	ND	0.0058	2.54		Vinyl Acetate			ND	0.018	2.54	
c-1,2-Dichloroethene	ND	0.0050	2.54		Vinyl Chloride			ND	0.0032	2.54	
t-1,2-Dichloroethene	ND	0.0050	2.54								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	l	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	94	57-129			1,2-Dichloroeth	nane-d4		97	47-137		
Toluene-d8	92	78-156									

hM

Preparation:

Method:

Units:

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

	A CONTRACT
Date Received:	11/22/10
Work Order No:	10-11-1740
Preparation:	N/A

Project: DFSP-Norwalk / VMP

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy		QC Batch ID
VMP-33-15-111910			10-11-1740-4-A		11/19/10 13:30	Air	GC/MS ZZ	N/A	11/23 22:0		101123L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Acetone	0.010	0.0065	1.36		t-1,3-Dichlorop	oropene		ND	0.0062	1.36	6
Benzene	ND	0.0022	1.36		Ethyl-t-Butyl E	ther (ETBE)	ND	0.011	1.36	6
Benzyl Chloride	ND	0.011	1.36		Ethylbenzene			ND	0.0030	1.36	3
Bromodichloromethane	ND	0.0046	1.36		4-Ethyltoluene	•		ND	0.0033	1.36	6
Bromoform	ND	0.0070	1.36		Hexachloro-1,	3-Butadiene	9	ND	0.022	1.36	3
Bromomethane	ND	0.0026	1.36		2-Hexanone			ND	0.0084	1.36	6
2-Butanone	ND	0.0060	1.36		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.0098	1.36	3
Carbon Disulfide	ND	0.0085	1.36		Methylene Chl	oride		ND	0.024	1.36	6
Carbon Tetrachloride	ND	0.0043	1.36		4-Methyl-2-Pe	ntanone		ND	0.0084	1.36	
Chlorobenzene	ND	0.0031	1.36		o-Xylene			ND	0.0030	1.36	6
Chloroethane	ND	0.0018	1.36		p/m-Xylene			ND	0.012	1.36	
Chloroform	ND	0.0033	1.36		Styrene			ND	0.0087	1.36	6
Chloromethane	ND	0.0014	1.36		Tert-Amyl-Met	· · ·	TAME)	ND	0.011	1.36	6
Dibromochloromethane	ND	0.0058	1.36		Tert-Butyl Alco	· · ·		ND	0.0082	1.36	6
Dichlorodifluoromethane	ND	0.0034	1.36		Tetrachloroeth	iene		0.016	0.0046	1.36	6
Diisopropyl Ether (DIPE)	ND	0.011	1.36		Toluene			0.0071	0.0026	1.36	6
1,1-Dichloroethane	ND	0.0028	1.36		Trichloroethen	e		ND	0.0037	1.36	6
1,1-Dichloroethene	ND	0.0027	1.36		Trichlorofluoro	methane		ND	0.0076	1.36	6
1,2-Dibromoethane	ND	0.0052	1.36		1,1,2-Trichloro	o-1,2,2-Trifl	uoroethane	ND	0.016	1.36	6
Dichlorotetrafluoroethane	ND	0.019	1.36		1,1,1-Trichloro	bethane		ND	0.0037	1.36	3
1,2-Dichlorobenzene	ND	0.0041	1.36		1,1,2-Trichloro	bethane		ND	0.0037	1.36	6
1,2-Dichloroethane	ND	0.0028	1.36		1,3,5-Trimethy	/lbenzene		ND	0.0033	1.36	3
1,2-Dichloropropane	ND	0.0031	1.36		1,1,2,2-Tetrac	hloroethane	;	ND	0.0093	1.36	6
1,3-Dichlorobenzene	ND	0.0041	1.36		1,2,4-Trimethy			ND	0.010	1.36	6
1,4-Dichlorobenzene	ND	0.0041	1.36		1,2,4-Trichloro	obenzene		ND	0.020	1.36	6
c-1,3-Dichloropropene	ND	0.0031	1.36		Vinyl Acetate			ND	0.0096	1.36	3
c-1,2-Dichloroethene	ND	0.0027	1.36		Vinyl Chloride			ND	0.0017	1.36	6
t-1,2-Dichloroethene	ND	0.0027	1.36								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>1</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	lual
1,4-Bromofluorobenzene	92	57-129			1,2-Dichloroet	hane-d4		103	47-137		
Toluene-d8	94	78-156									

N/A

ug/L

EPA TO-15

Page 4 of 19

NACCORD

Page 7 of 28

A PROPADANCE T

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

11/22/10
10-11-1740
N/A
EPA TO-15
ug/L

Page 5 of 19

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy		QC Batch ID
VMP-34-05-111910			10-11-1740-5-A		11/19/10 13:45	Air	GC/MS ZZ	N/A	11/23 22:5		101123L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	<u>RL</u>	DF	<u>Qual</u>
Acetone	ND	0.012	2.44		t-1,3-Dichlorop			ND	0.011	2.44	
Benzene	ND	0.0039	2.44		Ethyl-t-Butyl E	ther (ETBE	Ξ)	ND	0.020	2.44	
Benzyl Chloride	ND	0.019	2.44		Ethylbenzene			ND	0.0053	2.44	
Bromodichloromethane	ND	0.0082	2.44		4-Ethyltoluene			ND	0.0060	2.44	
Bromoform	ND	0.013	2.44		Hexachloro-1,3	3-Butadien	е	ND	0.039	2.44	
Bromomethane	ND	0.0047	2.44		2-Hexanone			ND	0.015	2.44	
2-Butanone	ND	0.011	2.44		Methyl-t-Butyl	Ether (MTI	BE)	ND	0.018	2.44	
Carbon Disulfide	ND	0.015	2.44		Methylene Chl	oride		ND	0.042	2.44	
Carbon Tetrachloride	ND	0.0077	2.44		4-Methyl-2-Pe	ntanone		ND	0.015	2.44	
Chlorobenzene	ND	0.0056	2.44		o-Xylene			ND	0.0053	2.44	
Chloroethane	ND	0.0032	2.44		p/m-Xylene			ND	0.021	2.44	
Chloroform	ND	0.0060	2.44		Styrene			ND	0.016	2.44	
Chloromethane	ND	0.0025	2.44		Tert-Amyl-Met	hyl Ether (TAME)	ND	0.020	2.44	
Dibromochloromethane	ND	0.010	2.44		Tert-Butyl Alco	ohol (TBA)		ND	0.015	2.44	
Dichlorodifluoromethane	0.0067	0.0060	2.44		Tetrachloroeth	ene		ND	0.0083	2.44	
Diisopropyl Ether (DIPE)	ND	0.020	2.44		Toluene			0.0051	0.0046	2.44	
1,1-Dichloroethane	ND	0.0049	2.44		Trichloroethen	е		ND	0.0066	2.44	
1,1-Dichloroethene	ND	0.0048	2.44		Trichlorofluoro	methane		ND	0.014	2.44	
1,2-Dibromoethane	ND	0.0094	2.44		1,1,2-Trichloro	-1,2,2-Trif	uoroethane	ND	0.028	2.44	
Dichlorotetrafluoroethane	ND	0.034	2.44		1,1,1-Trichloro	ethane		ND	0.0067	2.44	
1,2-Dichlorobenzene	ND	0.0073	2.44		1,1,2-Trichloro	ethane		ND	0.0067	2.44	
1,2-Dichloroethane	ND	0.0049	2.44		1,3,5-Trimethy	lbenzene		ND	0.0060	2.44	
1,2-Dichloropropane	ND	0.0056	2.44		1,1,2,2-Tetrac	hloroethan	е	ND	0.017	2.44	
1,3-Dichlorobenzene	ND	0.0073	2.44		1,2,4-Trimethy	lbenzene		ND	0.018	2.44	
1,4-Dichlorobenzene	ND	0.0073	2.44		1,2,4-Trichlor			ND	0.036	2.44	
c-1,3-Dichloropropene	ND	0.0055	2.44		Vinyl Acetate			ND	0.017	2.44	
c-1,2-Dichloroethene	ND	0.0048	2.44		Vinyl Chloride			ND	0.0031	2.44	
t-1,2-Dichloroethene	ND	0.0048	2.44		-						
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	96	57-129			1,2-Dichloroet	hane-d4		104	47-137		
Toluene-d8	96	78-156			,						
	00	10-100									

hM

Page 8 of 28

A DE DE LN ACCORDANON

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

11/22/10
10-11-1740
N/A
EPA TO-15
ug/L

Page 6 of 19

Project: DFSP-Norwalk / VMP

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Matrix Instrument		Date/Time Analyzed		QC Batch ID
VMP-34-15-111910			10-11-1740-6-A		11/19/10 13:50	Air	GC/MS ZZ	N/A	11/23 23:3		101123L01
Parameter	<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	0.012	2.46		t-1,3-Dichlorop	propene		ND	0.011	2.46	
Benzene	0.011	0.0039	2.46		Ethyl-t-Butyl E	ther (ETBE	E)	ND	0.021	2.46	
Benzyl Chloride	ND	0.019	2.46		Ethylbenzene			ND	0.0053	2.46	
Bromodichloromethane	ND	0.0082	2.46		4-Ethyltoluene			ND	0.0060	2.46	
Bromoform	ND	0.013	2.46		Hexachloro-1,	3-Butadien	е	ND	0.039	2.46	
Bromomethane	ND	0.0048	2.46		2-Hexanone			ND	0.015	2.46	
2-Butanone	ND	0.011	2.46		Methyl-t-Butyl	Ether (MT	BE)	ND	0.018	2.46	
Carbon Disulfide	ND	0.015	2.46		Methylene Chl	oride		ND	0.043	2.46	
Carbon Tetrachloride	ND	0.0077	2.46		4-Methyl-2-Pe	ntanone		ND	0.015	2.46	
Chlorobenzene	ND	0.0057	2.46		o-Xylene			ND	0.0053	2.46	
Chloroethane	ND	0.0032	2.46		p/m-Xylene			ND	0.021	2.46	
Chloroform	ND	0.0060	2.46		Styrene			ND	0.016	2.46	
Chloromethane	ND	0.0025	2.46		Tert-Amyl-Met	hyl Ether (TAME)	ND	0.021	2.46	
Dibromochloromethane	ND	0.010	2.46		Tert-Butyl Alco	ohol (TBA)		ND	0.015	2.46	
Dichlorodifluoromethane	ND	0.0061	2.46		Tetrachloroeth	ene		0.013	0.0083	2.46	
Diisopropyl Ether (DIPE)	ND	0.021	2.46		Toluene			0.026	0.0046	2.46	
1,1-Dichloroethane	ND	0.0050	2.46		Trichloroethen	е		ND	0.0066	2.46	
1,1-Dichloroethene	ND	0.0049	2.46		Trichlorofluoro	methane		ND	0.014	2.46	
1,2-Dibromoethane	ND	0.0095	2.46		1,1,2-Trichloro	-1,2,2-Trif	luoroethane	ND	0.028	2.46	
Dichlorotetrafluoroethane	ND	0.034	2.46		1,1,1-Trichlord	ethane		ND	0.0067	2.46	
1,2-Dichlorobenzene	ND	0.0074	2.46		1,1,2-Trichloro	ethane		ND	0.0067	2.46	
1,2-Dichloroethane	ND	0.0050	2.46		1,3,5-Trimethy	lbenzene		ND	0.0060	2.46	
1,2-Dichloropropane	ND	0.0057	2.46		1,1,2,2-Tetrac	hloroethan	е	ND	0.017	2.46	
1,3-Dichlorobenzene	ND	0.0074	2.46		1,2,4-Trimethy	lbenzene		ND	0.018	2.46	
1,4-Dichlorobenzene	ND	0.0074	2.46		1,2,4-Trichlord	benzene		ND	0.037	2.46	
c-1,3-Dichloropropene	ND	0.0056	2.46		Vinyl Acetate			ND	0.017	2.46	
c-1,2-Dichloroethene	ND	0.0049	2.46		Vinyl Chloride			ND	0.0031	2.46	
t-1,2-Dichloroethene	ND	0.0049	2.46		-						
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	95	57-129			1,2-Dichloroet	hane-d4		106	47-137		
Toluene-d8	90	78-156			,						

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 9 of 28

Sonelac H

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:	
Work Order No:	
Preparation:	
Method:	
Units:	

11/22/10
10-11-1740
N/A
EPA TO-15
ug/L
Page 7 of 19

Project: DFSP-Norwalk / VMP

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/1 Analy		QC Batch ID
VMP-35-05-111910			10-11-1740-7-A		11/19/10 14:20	Air	GC/MS ZZ	N/A	11/24 00:2		101123L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	<u>RL</u>	DF	<u>Qual</u>
Acetone	ND	0.011	2.38		t-1,3-Dichlorop	oropene		ND	0.011	2.38	
Benzene	ND	0.0038	2.38		Ethyl-t-Butyl E	ther (ETBE	E)	ND	0.020	2.38	
Benzyl Chloride	ND	0.018	2.38		Ethylbenzene			ND	0.0052	2.38	
Bromodichloromethane	ND	0.0080	2.38		4-Ethyltoluene	•		ND	0.0058	2.38	
Bromoform	ND	0.012	2.38		Hexachloro-1,	3-Butadien	e	ND	0.038	2.38	
Bromomethane	ND	0.0046	2.38		2-Hexanone			ND	0.015	2.38	
2-Butanone	ND	0.011	2.38		Methyl-t-Butyl	Ether (MTI	BE)	ND	0.017	2.38	
Carbon Disulfide	ND	0.015	2.38		Methylene Chl	oride		ND	0.041	2.38	
Carbon Tetrachloride	ND	0.0075	2.38		4-Methyl-2-Pe	ntanone		ND	0.015	2.38	
Chlorobenzene	ND	0.0055	2.38		o-Xylene			ND	0.0052	2.38	
Chloroethane	ND	0.0031	2.38		p/m-Xylene			ND	0.021	2.38	
Chloroform	ND	0.0058	2.38		Styrene			ND	0.015	2.38	
Chloromethane	ND	0.0025	2.38		Tert-Amyl-Met	hyl Ether (TAME)	ND	0.020	2.38	
Dibromochloromethane	ND	0.010	2.38		Tert-Butyl Alco	ohol (TBA)		ND	0.014	2.38	
Dichlorodifluoromethane	ND	0.0059	2.38		Tetrachloroeth	iene		ND	0.0081	2.38	
Diisopropyl Ether (DIPE)	ND	0.020	2.38		Toluene			ND	0.0045	2.38	
1,1-Dichloroethane	ND	0.0048	2.38		Trichloroethen	e		ND	0.0064	2.38	
1,1-Dichloroethene	ND	0.0047	2.38		Trichlorofluoro	methane		ND	0.013	2.38	
1,2-Dibromoethane	ND	0.0091	2.38		1,1,2-Trichloro	o-1,2,2-Trif	luoroethane	ND	0.027	2.38	
Dichlorotetrafluoroethane	ND	0.033	2.38		1,1,1-Trichlor	bethane		ND	0.0065	2.38	
1,2-Dichlorobenzene	ND	0.0072	2.38		1,1,2-Trichlord	bethane		ND	0.0065	2.38	
1,2-Dichloroethane	ND	0.0048	2.38		1,3,5-Trimethy	/lbenzene		ND	0.0058	2.38	
1,2-Dichloropropane	ND	0.0055	2.38		1,1,2,2-Tetrac	hloroethan	е	ND	0.016	2.38	
1,3-Dichlorobenzene	ND	0.0072	2.38		1,2,4-Trimethy	/lbenzene		ND	0.018	2.38	
1,4-Dichlorobenzene	ND	0.0072	2.38		1,2,4-Trichlor	benzene		ND	0.035	2.38	
c-1,3-Dichloropropene	ND	0.0054	2.38		Vinyl Acetate			ND	0.017	2.38	
c-1,2-Dichloroethene	ND	0.0047	2.38		Vinyl Chloride			ND	0.0030	2.38	
t-1,2-Dichloroethene	ND	0.0047	2.38		-						
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	96	57-129			1,2-Dichloroet	hane-d4		102	47-137		
Toluene-d8	93	78-156			,				-		

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 10 of 28

A DE DE LA ACCORDANCE

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:
Work Order No:
Preparation:
Method:
Units:

11/22/10
10-11-1740
N/A
EPA TO-15
ug/L
Page 8 of 19

Client Sample Number			Lab Sample Number		Date/Time Collected	Matrix	Matrix Instrument		Date/Time Analyzed		QC Batch ID
VMP-35-05-111910 Dup			10-11-1740-8-A		11/19/10 14:21	Air	GC/MS ZZ	N/A	11/24 01:1		101123L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	<u>RL</u>	DF	<u>Qual</u>
Acetone	0.013	0.013	2.67		t-1,3-Dichlorop	oropene		ND	0.012	2.67	
Benzene	ND	0.0043	2.67		Ethyl-t-Butyl E	ther (ETBE	Ξ)	ND	0.022	2.67	
Benzyl Chloride	ND	0.021	2.67		Ethylbenzene			ND	0.0058	2.67	
Bromodichloromethane	ND	0.0089	2.67		4-Ethyltoluene	•		ND	0.0066	2.67	
Bromoform	ND	0.014	2.67		Hexachloro-1,3	3-Butadien	е	ND	0.043	2.67	,
Bromomethane	ND	0.0052	2.67		2-Hexanone			ND	0.016	2.67	
2-Butanone	ND	0.012	2.67		Methyl-t-Butyl	Ether (MT	BE)	ND	0.019	2.67	,
Carbon Disulfide	ND	0.017	2.67		Methylene Chl	oride		ND	0.046	2.67	
Carbon Tetrachloride	ND	0.0084	2.67		4-Methyl-2-Pe	ntanone		ND	0.016	2.67	,
Chlorobenzene	ND	0.0061	2.67		o-Xylene			0.0069	0.0058	2.67	,
Chloroethane	ND	0.0035	2.67		p/m-Xylene			ND	0.023	2.67	
Chloroform	ND	0.0065	2.67		Styrene			ND	0.017	2.67	,
Chloromethane	ND	0.0028	2.67		Tert-Amyl-Met	hyl Ether (TAME)	ND	0.022	2.67	
Dibromochloromethane	ND	0.011	2.67		Tert-Butyl Alco	ohol (TBA)		ND	0.016	2.67	
Dichlorodifluoromethane	ND	0.0066	2.67		Tetrachloroeth	iene		ND	0.0091	2.67	
Diisopropyl Ether (DIPE)	ND	0.022	2.67		Toluene			0.016	0.0050	2.67	,
1,1-Dichloroethane	ND	0.0054	2.67		Trichloroethen	e		ND	0.0072	2.67	•
1,1-Dichloroethene	ND	0.0053	2.67		Trichlorofluoro	methane		ND	0.015	2.67	
1,2-Dibromoethane	ND	0.010	2.67		1,1,2-Trichloro	o-1,2,2-Trif	luoroethane	ND	0.031	2.67	•
Dichlorotetrafluoroethane	ND	0.037	2.67		1,1,1-Trichlord	bethane		ND	0.0073	2.67	
1,2-Dichlorobenzene	ND	0.0080	2.67		1,1,2-Trichloro	bethane		ND	0.0073	2.67	
1,2-Dichloroethane	ND	0.0054	2.67		1,3,5-Trimethy	/lbenzene		ND	0.0066	2.67	
1,2-Dichloropropane	ND	0.0062	2.67		1,1,2,2-Tetrac	hloroethan	е	ND	0.018	2.67	•
1,3-Dichlorobenzene	ND	0.0080	2.67		1,2,4-Trimethy	/lbenzene		ND	0.020	2.67	
1,4-Dichlorobenzene	ND	0.0080	2.67		1,2,4-Trichlor			ND	0.040	2.67	
c-1,3-Dichloropropene	ND	0.0061	2.67		Vinyl Acetate			ND	0.019	2.67	,
c-1,2-Dichloroethene	ND	0.0053	2.67		Vinyl Chloride			ND	0.0034	2.67	
t-1,2-Dichloroethene	ND	0.0053	2.67		-						
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>Q</u>	ual
1,4-Bromofluorobenzene	96	57-129			1,2-Dichloroet	hane-d4		104	47-137		
Toluene-d8	94	78-156			,				-		
	0.	10 100									

hm

Sonelac H

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

Date Received:
Work Order No:
Preparation:
Method:
Units:

10-11-1740
N/A
EPA TO-15
ug/L

Page 9 of 19

11/22/10

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
VMP-35-15-111910			10	-11-1740-9-A	11/19/10 14:30	Air	GC/MS ZZ	N/A	11/23 02:		101122L01
Parameter	<u>Result</u>	<u>RL</u>	D	Qual	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Acetone	0.011	0.0048	1		t-1,3-Dichlorop	propene		ND	0.0045	1	
Benzene	ND	0.0016	1		Ethyl-t-Butyl E	ther (ETBE	Ξ)	ND	0.0084	1	
Benzyl Chloride	ND	0.0078	1		Ethylbenzene			ND	0.0022	1	
Bromodichloromethane	ND	0.0034	1		4-Ethyltoluene			ND	0.0025	1	
Bromoform	ND	0.0052	1		Hexachloro-1,3	3-Butadien	e	ND	0.016	1	
Bromomethane	ND	0.0019	1		2-Hexanone			ND	0.0061	1	
2-Butanone	ND	0.0044	1		Methyl-t-Butyl	Ether (MTI	3E)	ND	0.0072	1	
Carbon Disulfide	0.0072	0.0062	1		Methylene Chl	oride		ND	0.017	1	
Carbon Tetrachloride	ND	0.0031	1		4-Methyl-2-Pe	ntanone		ND	0.0061	1	
Chlorobenzene	ND	0.0023	1		o-Xylene			ND	0.0022	1	
Chloroethane	ND	0.0013	1		p/m-Xylene			ND	0.0087	1	
Chloroform	0.0027	0.0024	1		Styrene			ND	0.0064	1	
Chloromethane	ND	0.0010	1		Tert-Amyl-Met	hyl Ether (TAME)	ND	0.0084	1	
Dibromochloromethane	ND	0.0043	1		Tert-Butyl Alco	ohol (TBA)		ND	0.0061	1	
Dichlorodifluoromethane	ND	0.0025	1		Tetrachloroeth	ene		0.0064	0.0034	1	
Diisopropyl Ether (DIPE)	ND	0.0084	1		Toluene			0.0039	0.0019	1	
1,1-Dichloroethane	ND	0.0020	1		Trichloroethen	е		ND	0.0027	1	
1,1-Dichloroethene	ND	0.0020	1		Trichlorofluoro	methane		ND	0.0056	1	
1,2-Dibromoethane	ND	0.0038	1		1,1,2-Trichloro	o-1,2,2-Trif	uoroethane	ND	0.011	1	
Dichlorotetrafluoroethane	ND	0.014	1		1,1,1-Trichloro	bethane		ND	0.0027	1	
1,2-Dichlorobenzene	ND	0.0030	1		1,1,2-Trichloro	bethane		ND	0.0027	1	
1,2-Dichloroethane	ND	0.0020	1		1,3,5-Trimethy	lbenzene		ND	0.0025	1	
1,2-Dichloropropane	ND	0.0023	1		1,1,2,2-Tetrac	hloroethan	e	ND	0.0069	1	
1,3-Dichlorobenzene	ND	0.0030	1		1,2,4-Trimethy	lbenzene		ND	0.0074	1	
1,4-Dichlorobenzene	ND	0.0030	1		1,2,4-Trichlord	benzene		ND	0.015	1	
c-1,3-Dichloropropene	ND	0.0023	1		Vinyl Acetate			ND	0.0070	1	
c-1,2-Dichloroethene	ND	0.0020	1		Vinyl Chloride			ND	0.0013	1	
t-1,2-Dichloroethene	ND	0.0020	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>c</u>	Qual
1,4-Bromofluorobenzene	89	57-129			1,2-Dichloroet	hane-d4		86	47-137		
Toluene-d8	92	78-156									

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

145		ORDA
9 ED		Norn
ACCA	Ie	

Date Received:	11/22/10
Work Order No:	10-11-1740
Preparation:	N/A
Method:	EPA TO-15
Units:	ug/L
	Page 10 of 19

Project: DFSP-Norwalk / VMP

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
VMP-Field Blank-111910			10	-11-1740-10-A	11/19/10 14:33	Air	GC/MS ZZ	N/A	11/23 03:		101122L01
Parameter	<u>Result</u>	<u>RL</u>	D	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acetone	0.022	0.0048	1		t-1,3-Dichlorop	oropene		ND	0.0045	1	
Benzene	ND	0.0016	1		Ethyl-t-Butyl E	ther (ETBE	E)	ND	0.0084	1	
Benzyl Chloride	ND	0.0078	1		Ethylbenzene			ND	0.0022	1	
Bromodichloromethane	ND	0.0034	1		4-Ethyltoluene	•		ND	0.0025	1	
Bromoform	ND	0.0052	1		Hexachloro-1,	3-Butadiene	e	ND	0.016	1	
Bromomethane	ND	0.0019	1		2-Hexanone			ND	0.0061	1	
2-Butanone	ND	0.0044	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.0072	1	
Carbon Disulfide	ND	0.0062	1		Methylene Chl	oride		ND	0.017	1	
Carbon Tetrachloride	ND	0.0031	1		4-Methyl-2-Pe	ntanone		ND	0.0061	1	
Chlorobenzene	ND	0.0023	1		o-Xylene			ND	0.0022	1	
Chloroethane	ND	0.0013	1		p/m-Xylene			ND	0.0087	1	
Chloroform	ND	0.0024	1		Styrene			ND	0.0064	1	
Chloromethane	ND	0.0010	1		Tert-Amyl-Met	hyl Ether (1	TAME)	ND	0.0084	1	
Dibromochloromethane	ND	0.0043	1		Tert-Butyl Alco	ohol (TBA)		ND	0.0061	1	
Dichlorodifluoromethane	ND	0.0025	1		Tetrachloroeth	iene		ND	0.0034	1	
Diisopropyl Ether (DIPE)	ND	0.0084	1		Toluene			0.0023	0.0019	1	
1,1-Dichloroethane	ND	0.0020	1		Trichloroethen	e		ND	0.0027	1	
1,1-Dichloroethene	ND	0.0020	1		Trichlorofluoro	methane		ND	0.0056	1	
1,2-Dibromoethane	ND	0.0038	1		1,1,2-Trichloro	o-1,2,2-Trifl	uoroethane	ND	0.011	1	
Dichlorotetrafluoroethane	ND	0.014	1		1,1,1-Trichloro	bethane		ND	0.0027	1	
1,2-Dichlorobenzene	ND	0.0030	1		1,1,2-Trichloro	bethane		ND	0.0027	1	
1,2-Dichloroethane	ND	0.0020	1		1,3,5-Trimethy	/lbenzene		ND	0.0025	1	
1,2-Dichloropropane	ND	0.0023	1		1,1,2,2-Tetrac	hloroethane	9	ND	0.0069	1	
1,3-Dichlorobenzene	ND	0.0030	1		1,2,4-Trimethy	/lbenzene		ND	0.0074	1	
1,4-Dichlorobenzene	ND	0.0030	1		1,2,4-Trichlord	obenzene		ND	0.015	1	
c-1,3-Dichloropropene	ND	0.0023	1		Vinyl Acetate			ND	0.0070	1	
c-1,2-Dichloroethene	ND	0.0020	1		Vinyl Chloride			ND	0.0013	1	
t-1,2-Dichloroethene	ND	0.0020	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	<u>Qual</u>
1,4-Bromofluorobenzene	91	57-129			1,2-Dichloroet	hane-d4		87	47-137		
Toluene-d8	93	78-156									

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ,

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Method:

Units:

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

	O V
Date Received:	11/22/10
Work Order No:	10-11-1740
Preparation:	N/A

Project: DFSP-Norwalk / VMP

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
VMP-36-05-111910			10-	·11-1740-11-A	11/19/10 14:55	Air	GC/MS ZZ	N/A	11/23 04:		101122L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acetone	0.0074	0.0048	1		t-1,3-Dichloro	oropene		ND	0.0045	1	
Benzene	ND	0.0016	1		Ethyl-t-Butyl E	ther (ETBE	E)	ND	0.0084	1	
Benzyl Chloride	ND	0.0078	1		Ethylbenzene			ND	0.0022	1	
Bromodichloromethane	ND	0.0034	1		4-Ethyltoluene	•		ND	0.0025	1	
Bromoform	ND	0.0052	1		Hexachloro-1,	3-Butadien	е	ND	0.016	1	
Bromomethane	ND	0.0019	1		2-Hexanone			ND	0.0061	1	
2-Butanone	ND	0.0044	1		Methyl-t-Butyl	Ether (MTI	BE)	ND	0.0072	1	
Carbon Disulfide	ND	0.0062	1		Methylene Ch	oride		ND	0.017	1	
Carbon Tetrachloride	ND	0.0031	1		4-Methyl-2-Pe	ntanone		ND	0.0061	1	
Chlorobenzene	ND	0.0023	1		o-Xylene			ND	0.0022	1	
Chloroethane	ND	0.0013	1		p/m-Xylene			ND	0.0087	1	
Chloroform	ND	0.0024	1		Styrene			ND	0.0064	1	
Chloromethane	ND	0.0010	1		Tert-Amyl-Met	thyl Ether (TAME)	ND	0.0084	1	
Dibromochloromethane	ND	0.0043	1		Tert-Butyl Alco	ohol (TBA)		ND	0.0061	1	
Dichlorodifluoromethane	ND	0.0025	1		Tetrachloroeth	nene		ND	0.0034	1	
Diisopropyl Ether (DIPE)	ND	0.0084	1		Toluene			0.0033	0.0019	1	
1,1-Dichloroethane	ND	0.0020	1		Trichloroether	e		ND	0.0027	1	
1,1-Dichloroethene	ND	0.0020	1		Trichlorofluoro	omethane		ND	0.0056	1	
1,2-Dibromoethane	ND	0.0038	1		1,1,2-Trichlor	o-1,2,2-Trif	luoroethane	ND	0.011	1	
Dichlorotetrafluoroethane	ND	0.014	1		1,1,1-Trichlor	pethane		ND	0.0027	1	
1,2-Dichlorobenzene	ND	0.0030	1		1,1,2-Trichlor	pethane		ND	0.0027	1	
1,2-Dichloroethane	ND	0.0020	1		1,3,5-Trimethy	/lbenzene		ND	0.0025	1	
1,2-Dichloropropane	ND	0.0023	1		1,1,2,2-Tetrac	hloroethan	e	ND	0.0069	1	
1,3-Dichlorobenzene	ND	0.0030	1		1,2,4-Trimethy	/lbenzene		ND	0.0074	1	
1,4-Dichlorobenzene	ND	0.0030	1		1,2,4-Trichlor	obenzene		ND	0.015	1	
c-1,3-Dichloropropene	ND	0.0023	1		Vinyl Acetate			ND	0.0070	1	
c-1,2-Dichloroethene	ND	0.0020	1		Vinyl Chloride			ND	0.0013	1	
t-1,2-Dichloroethene	ND	0.0020	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>c</u>	<u>Qual</u>
1,4-Bromofluorobenzene	91	57-129			1,2-Dichloroet	hane-d4		89	47-137		
Toluene-d8	93	78-156			,						

EPA TO-15

Page 11 of 19

ug/L

NACCORD

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Mulhan

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

~	(Fr		AN	
44				n
10CA				42
A O				

NACCO

Date Received:	11/22/10
Work Order No:	10-11-1740
Preparation:	N/A
Method:	EPA TO-15
Units:	ug/L
	Page 12 of 19

Project: DFSP-Norwalk / VMP

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
VMP-36-15-111910			10	-11-1740-12-A	11/19/10 15:00	Air	GC/MS ZZ	N/A	11/23 04:		101122L01
Parameter	<u>Result</u>	<u>RL</u>	D	E <u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Acetone	0.0071	0.0048	1		t-1,3-Dichlorop	oropene		ND	0.0045	1	
Benzene	ND	0.0016	1		Ethyl-t-Butyl E	ther (ETBE	=)	ND	0.0084	1	
Benzyl Chloride	ND	0.0078	1		Ethylbenzene			ND	0.0022	1	
Bromodichloromethane	ND	0.0034	1		4-Ethyltoluene)		ND	0.0025	1	
Bromoform	ND	0.0052	1		Hexachloro-1,	3-Butadien	е	ND	0.016	1	
Bromomethane	ND	0.0019	1		2-Hexanone			ND	0.0061	1	
2-Butanone	ND	0.0044	1		Methyl-t-Butyl	Ether (MTE	3E)	ND	0.0072	1	
Carbon Disulfide	ND	0.0062	1		Methylene Chl	oride		ND	0.017	1	
Carbon Tetrachloride	ND	0.0031	1		4-Methyl-2-Pe	ntanone		ND	0.0061	1	
Chlorobenzene	ND	0.0023	1		o-Xylene			ND	0.0022	1	
Chloroethane	ND	0.0013	1		p/m-Xylene			ND	0.0087	1	
Chloroform	ND	0.0024	1		Styrene			ND	0.0064	1	
Chloromethane	ND	0.0010	1		Tert-Amyl-Met	thyl Ether (ΓΑΜΕ)	ND	0.0084	1	
Dibromochloromethane	ND	0.0043	1		Tert-Butyl Alco	ohol (TBA)		ND	0.0061	1	
Dichlorodifluoromethane	ND	0.0025	1		Tetrachloroeth	nene		0.0065	0.0034	1	
Diisopropyl Ether (DIPE)	ND	0.0084	1		Toluene			0.0030	0.0019	1	
1,1-Dichloroethane	ND	0.0020	1		Trichloroethen	e		ND	0.0027	1	
1,1-Dichloroethene	ND	0.0020	1		Trichlorofluoro	omethane		ND	0.0056	1	
1,2-Dibromoethane	ND	0.0038	1		1,1,2-Trichloro	o-1,2,2-Trifl	uoroethane	ND	0.011	1	
Dichlorotetrafluoroethane	ND	0.014	1		1,1,1-Trichlord	pethane		ND	0.0027	1	
1,2-Dichlorobenzene	ND	0.0030	1		1,1,2-Trichlor	bethane		ND	0.0027	1	
1,2-Dichloroethane	ND	0.0020	1		1,3,5-Trimethy	/lbenzene		ND	0.0025	1	
1,2-Dichloropropane	ND	0.0023	1		1,1,2,2-Tetrac	hloroethane	e	ND	0.0069	1	
1,3-Dichlorobenzene	ND	0.0030	1		1,2,4-Trimethy	/lbenzene		ND	0.0074	1	
1,4-Dichlorobenzene	ND	0.0030	1		1,2,4-Trichlor	obenzene		ND	0.015	1	
c-1,3-Dichloropropene	ND	0.0023	1		Vinyl Acetate			ND	0.0070	1	
c-1,2-Dichloroethene	ND	0.0020	1		Vinyl Chloride			ND	0.0013	1	
t-1,2-Dichloroethene	ND	0.0020	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>(</u>	Qual
1,4-Bromofluorobenzene	94	57-129			1,2-Dichloroet	hane-d4		92	47-137		
Toluene-d8	94	78-156									

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

Mulhan

Units:

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

TED IN ACCORDAN
a nelac
11/00/1

Date Received: Work Order No: Preparation: Method:

11/22/10
10-11-1740
N/A
EPA TO-15
ug/L
Page 13 of 19

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
VMP-37-05-111910			10	-11-1740-13-A	11/19/10 15:20	Air	GC/MS ZZ	N/A	11/23 05:		101122L01
Parameter	<u>Result</u>	<u>RL</u>	D	E <u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Acetone	0.0078	0.0048	1		t-1,3-Dichlorop	propene		ND	0.0045	1	
Benzene	ND	0.0016	1		Ethyl-t-Butyl E	ther (ETBE	E)	ND	0.0084	1	
Benzyl Chloride	ND	0.0078	1		Ethylbenzene			ND	0.0022	1	
Bromodichloromethane	ND	0.0034	1		4-Ethyltoluene			ND	0.0025	1	
Bromoform	ND	0.0052	1		Hexachloro-1,3	3-Butadiene	e	ND	0.016	1	
Bromomethane	ND	0.0019	1		2-Hexanone			ND	0.0061	1	
2-Butanone	ND	0.0044	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.0072	1	
Carbon Disulfide	ND	0.0062	1		Methylene Chl	oride		ND	0.017	1	
Carbon Tetrachloride	ND	0.0031	1		4-Methyl-2-Pe	ntanone		ND	0.0061	1	
Chlorobenzene	ND	0.0023	1		o-Xylene			ND	0.0022	1	
Chloroethane	ND	0.0013	1		p/m-Xylene			ND	0.0087	1	
Chloroform	ND	0.0024	1		Styrene			ND	0.0064	1	
Chloromethane	ND	0.0010	1		Tert-Amyl-Met	hyl Ether (1	TAME)	ND	0.0084	1	
Dibromochloromethane	ND	0.0043	1		Tert-Butyl Alco	ohol (TBA)		ND	0.0061	1	
Dichlorodifluoromethane	0.0026	0.0025	1		Tetrachloroeth	ene		ND	0.0034	1	
Diisopropyl Ether (DIPE)	ND	0.0084	1		Toluene			ND	0.0019	1	
1,1-Dichloroethane	ND	0.0020	1		Trichloroethen	е		ND	0.0027	1	
1,1-Dichloroethene	ND	0.0020	1		Trichlorofluoro	methane		ND	0.0056	1	
1,2-Dibromoethane	ND	0.0038	1		1,1,2-Trichlord	-1,2,2-Trifl	uoroethane	ND	0.011	1	
Dichlorotetrafluoroethane	ND	0.014	1		1,1,1-Trichlord	ethane		ND	0.0027	1	
1,2-Dichlorobenzene	ND	0.0030	1		1,1,2-Trichloro	ethane		ND	0.0027	1	
1,2-Dichloroethane	ND	0.0020	1		1,3,5-Trimethy	lbenzene		ND	0.0025	1	
1,2-Dichloropropane	ND	0.0023	1		1,1,2,2-Tetrac	hloroethane	9	ND	0.0069	1	
1,3-Dichlorobenzene	ND	0.0030	1		1,2,4-Trimethy	lbenzene		ND	0.0074	1	
1,4-Dichlorobenzene	ND	0.0030	1		1,2,4-Trichlord	benzene		ND	0.015	1	
c-1,3-Dichloropropene	ND	0.0023	1		Vinyl Acetate			ND	0.0070	1	
c-1,2-Dichloroethene	ND	0.0020	1		Vinyl Chloride			ND	0.0013	1	
t-1,2-Dichloroethene	ND	0.0020	1		-						
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>(</u>	Qual
1,4-Bromofluorobenzene	94	57-129			1,2-Dichloroet	hane-d4		94	47-137		
Toluene-d8	94	78-156			,						

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

	ED	INA	CCO	ROAN	
E0	2		E		Cr
1 C C A		P	2		
\triangleleft					1

Date Received:	11/22/10
Work Order No:	10-11-1740
Preparation:	N/A
Method:	EPA TO-15
Units:	ug/L
	Page 14 of 19

Project: DFSP-Norwalk / VMP

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
VMP-37-15-111910			10	-11-1740-14-A	11/19/10 15:25	Air	GC/MS YY	N/A	11/23 02:		101122L01
Parameter	<u>Result</u>	<u>RL</u>	DI	Qual	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Acetone	0.0048	0.0048	1		t-1,3-Dichlorop	propene		ND	0.0045	1	
Benzene	ND	0.0016	1		Ethyl-t-Butyl E	ther (ETBE	E)	ND	0.0084	1	
Benzyl Chloride	ND	0.0078	1		Ethylbenzene			ND	0.0022	1	
Bromodichloromethane	ND	0.0034	1		4-Ethyltoluene			ND	0.0025	1	
Bromoform	ND	0.0052	1		Hexachloro-1,	3-Butadien	е	ND	0.016	1	
Bromomethane	ND	0.0019	1		2-Hexanone			ND	0.0061	1	
2-Butanone	ND	0.0044	1		Methyl-t-Butyl	Ether (MTI	BE)	ND	0.0072	1	
Carbon Disulfide	ND	0.0062	1		Methylene Chl	oride		ND	0.017	1	
Carbon Tetrachloride	ND	0.0031	1		4-Methyl-2-Pe	ntanone		ND	0.0061	1	
Chlorobenzene	ND	0.0023	1		o-Xylene			ND	0.0022	1	
Chloroethane	ND	0.0013	1		p/m-Xylene			ND	0.0087	1	
Chloroform	ND	0.0024	1		Styrene			ND	0.0064	1	
Chloromethane	ND	0.0010	1		Tert-Amyl-Met	hyl Ether (TAME)	ND	0.0084	1	
Dibromochloromethane	ND	0.0043	1		Tert-Butyl Alco	ohol (TBA)		ND	0.0061	1	
Dichlorodifluoromethane	0.0028	0.0025	1		Tetrachloroeth	ene		ND	0.0034	1	
Diisopropyl Ether (DIPE)	ND	0.0084	1		Toluene			0.0023	0.0019	1	
1,1-Dichloroethane	ND	0.0020	1		Trichloroethen	e		ND	0.0027	1	
1,1-Dichloroethene	ND	0.0020	1		Trichlorofluoro	methane		ND	0.0056	1	
1,2-Dibromoethane	ND	0.0038	1		1,1,2-Trichloro	o-1,2,2-Trif	luoroethane	ND	0.011	1	
Dichlorotetrafluoroethane	ND	0.014	1		1,1,1-Trichlor	bethane		ND	0.0027	1	
1,2-Dichlorobenzene	ND	0.0030	1		1,1,2-Trichlor	bethane		ND	0.0027	1	
1,2-Dichloroethane	ND	0.0020	1		1,3,5-Trimethy	lbenzene		ND	0.0025	1	
1,2-Dichloropropane	ND	0.0023	1		1,1,2,2-Tetrac	hloroethan	e	ND	0.0069	1	
1,3-Dichlorobenzene	ND	0.0030	1		1,2,4-Trimethy	lbenzene		ND	0.0074	1	
1,4-Dichlorobenzene	ND	0.0030	1		1,2,4-Trichlor	benzene		ND	0.015	1	
c-1,3-Dichloropropene	ND	0.0023	1		Vinyl Acetate			ND	0.0070	1	
c-1,2-Dichloroethene	ND	0.0020	1		Vinyl Chloride			ND	0.0013	1	
t-1,2-Dichloroethene	ND	0.0020	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>c</u>	<u>Qual</u>
1,4-Bromofluorobenzene	102	57-129			1,2-Dichloroet	hane-d4		99	47-137		
Toluene-d8	97	78-156									

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Method:

Units:

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

	De la competitione de la competitiva de la competitione de la competit
Date Received:	11/22/10
Work Order No:	10-11-1740
Preparation:	N/A
Martha all	

EPA TO-15 ug/L

Page 15 of 19

Project: DFSP-Norwalk / VMP

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
VMP-38-05-111910			10	-11-1740-15-A	11/19/10 15:50	Air	GC/MS YY	N/A	11/23 02:		101122L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	<u>Qual</u>
Acetone	0.0096	0.0048	1		t-1,3-Dichlorop	propene		ND	0.0045	1	
Benzene	ND	0.0016	1		Ethyl-t-Butyl E	ther (ETBE)	ND	0.0084	1	
Benzyl Chloride	ND	0.0078	1		Ethylbenzene			ND	0.0022	1	
Bromodichloromethane	ND	0.0034	1		4-Ethyltoluene			ND	0.0025	1	
Bromoform	ND	0.0052	1		Hexachloro-1,	3-Butadien	e	ND	0.016	1	
Bromomethane	ND	0.0019	1		2-Hexanone			ND	0.0061	1	
2-Butanone	0.0081	0.0044	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.0072	1	
Carbon Disulfide	ND	0.0062	1		Methylene Chl	oride		ND	0.017	1	
Carbon Tetrachloride	ND	0.0031	1		4-Methyl-2-Pe			ND	0.0061	1	
Chlorobenzene	ND	0.0023	1		o-Xylene			ND	0.0022	1	
Chloroethane	ND	0.0013	1		p/m-Xylene			ND	0.0087	1	
Chloroform	ND	0.0024	1		Styrene			ND	0.0064	1	
Chloromethane	ND	0.0010	1		Tert-Amyl-Met	hyl Ether (ΓΑΜΕ)	ND	0.0084	1	
Dibromochloromethane	ND	0.0043	1		Tert-Butyl Alco	bhol (TBA)		ND	0.0061	1	
Dichlorodifluoromethane	0.0029	0.0025	1		Tetrachloroeth	ene		ND	0.0034	1	
Diisopropyl Ether (DIPE)	ND	0.0084	1		Toluene			0.0032	0.0019	1	
1,1-Dichloroethane	ND	0.0020	1		Trichloroethen	е		ND	0.0027	1	
1,1-Dichloroethene	ND	0.0020	1		Trichlorofluoro	methane		ND	0.0056	1	
1,2-Dibromoethane	ND	0.0038	1		1,1,2-Trichloro	-1,2,2-Trifl	uoroethane	ND	0.011	1	
Dichlorotetrafluoroethane	ND	0.014	1		1,1,1-Trichloro	ethane		ND	0.0027	1	
1,2-Dichlorobenzene	ND	0.0030	1		1,1,2-Trichloro	ethane		ND	0.0027	1	
1,2-Dichloroethane	ND	0.0020	1		1,3,5-Trimethy	lbenzene		ND	0.0025	1	
1,2-Dichloropropane	ND	0.0023	1		1,1,2,2-Tetrac	hloroethane	e	ND	0.0069	1	
1,3-Dichlorobenzene	ND	0.0030	1		1,2,4-Trimethy	lbenzene		ND	0.0074	1	
1,4-Dichlorobenzene	ND	0.0030	1		1,2,4-Trichlord	benzene		ND	0.015	1	
c-1,3-Dichloropropene	ND	0.0023	1		Vinyl Acetate			ND	0.0070	1	
c-1,2-Dichloroethene	ND	0.0020	1		Vinyl Chloride			ND	0.0013	1	
t-1,2-Dichloroethene	ND	0.0020	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>(</u>	<u>Qual</u>
1,4-Bromofluorobenzene	101	57-129			1,2-Dichloroet	hane-d4		101	47-137		
Toluene-d8	98	78-156			,						

NACCORD

7440 Lincoln Way, Garden Grove, CA 92841-1427 $\,\cdot\,\,$ TEL:(714) 895-5494 $\,\cdot\,\,$

FAX: (714) 894-7501

Mulhan

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

	A CONTRACTOR
Date Received:	11/22/10
Work Order No:	10-11-1740
Preparation:	N/A

Work Order No: Preparation: Method: Units: NACCORD

EPA TO-15 ug/L

Page 16 of 19

-										<u> </u>	
Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch II
VMP-38-15-111910			10	-11-1740-16-A	11/19/10 15:55	Air	GC/MS YY	N/A	11/23 03:4		101122L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Acetone	0.010	0.0048	1		t-1,3-Dichlorop	oropene		ND	0.0045	1	
Benzene	0.0036	0.0016	1		Ethyl-t-Butyl E	ther (ETBI	Ξ)	ND	0.0084	1	
Benzyl Chloride	ND	0.0078	1		Ethylbenzene			ND	0.0022	1	
Bromodichloromethane	ND	0.0034	1		4-Ethyltoluene	•		ND	0.0025	1	
Bromoform	ND	0.0052	1		Hexachloro-1,	3-Butadien	е	ND	0.016	1	
Bromomethane	ND	0.0019	1		2-Hexanone			ND	0.0061	1	
2-Butanone	ND	0.0044	1		Methyl-t-Butyl	Ether (MT	BE)	ND	0.0072	1	
Carbon Disulfide	ND	0.0062	1		Methylene Chl	oride		ND	0.017	1	
Carbon Tetrachloride	ND	0.0031	1		4-Methyl-2-Pe			ND	0.0061	1	
Chlorobenzene	ND	0.0023	1		o-Xylene			ND	0.0022	1	
Chloroethane	ND	0.0013	1		p/m-Xylene			ND	0.0087	1	
Chloroform	ND	0.0024	1		Styrene			ND	0.0064	1	
Chloromethane	ND	0.0010	1		Tert-Amyl-Met	hyl Ether (TAME)	ND	0.0084	1	
Dibromochloromethane	ND	0.0043	1		Tert-Butyl Alco	ohol (TBA)	,	ND	0.0061	1	
Dichlorodifluoromethane	ND	0.0025	1		Tetrachloroeth	iene		0.014	0.0034	1	
Diisopropyl Ether (DIPE)	ND	0.0084	1		Toluene			0.0097	0.0019	1	
1,1-Dichloroethane	ND	0.0020	1		Trichloroethen	e		ND	0.0027	1	
1,1-Dichloroethene	ND	0.0020	1		Trichlorofluoro	methane		ND	0.0056	1	
1,2-Dibromoethane	ND	0.0038	1		1,1,2-Trichloro	o-1,2,2-Trif	luoroethane	ND	0.011	1	
Dichlorotetrafluoroethane	ND	0.014	1		1,1,1-Trichlor	bethane		ND	0.0027	1	
1,2-Dichlorobenzene	ND	0.0030	1		1,1,2-Trichlor	bethane		ND	0.0027	1	
1,2-Dichloroethane	ND	0.0020	1		1,3,5-Trimethy	/lbenzene		ND	0.0025	1	
1,2-Dichloropropane	ND	0.0023	1		1,1,2,2-Tetrac	hloroethan	е	ND	0.0069	1	
1,3-Dichlorobenzene	ND	0.0030	1		1,2,4-Trimethy	/lbenzene		ND	0.0074	1	
1,4-Dichlorobenzene	ND	0.0030	1		1,2,4-Trichlor	benzene		ND	0.015	1	
c-1,3-Dichloropropene	ND	0.0023	1		Vinyl Acetate			ND	0.0070	1	
c-1,2-Dichloroethene	ND	0.0020	1		Vinyl Chloride			ND	0.0013	1	
t-1,2-Dichloroethene	ND	0.0020	1		-				-		
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>(</u>	Qual
1,4-Bromofluorobenzene	103	57-129			1.2-Dichloroet	hane-d4		100	47-137		
Toluene-d8	99	78-156			,				-		
	00	10-100									

MM

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

TEC	ORDAN
RED.	- In
A CCA	

Date Received:	11/22/10
Work Order No:	10-11-1740
Preparation:	N/A
Method:	EPA TO-15
Units:	ug/L
	Page 17 of 19

Project: DFSP-Norwalk / VMP

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
Method Blank			09	95-01-021-8,841	N/A	Air	GC/MS ZZ	N/A	11/22 13:		101122L01
Parameter	<u>Result</u>	<u>RL</u>	D	<u>E Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Acetone	ND	0.0048	1		t-1,3-Dichlorop	propene		ND	0.0045	1	
Benzene	ND	0.0016	1		Ethyl-t-Butyl E	ther (ETBE	E)	ND	0.0084	1	
Benzyl Chloride	ND	0.0078	1		Ethylbenzene			ND	0.0022	1	
Bromodichloromethane	ND	0.0034	1		4-Ethyltoluene			ND	0.0025	1	
Bromoform	ND	0.0052	1		Hexachloro-1,3	3-Butadiene	e	ND	0.016	1	
Bromomethane	ND	0.0019	1		2-Hexanone			ND	0.0061	1	
2-Butanone	ND	0.0044	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.0072	1	
Carbon Disulfide	ND	0.0062	1		Methylene Chl	oride		ND	0.017	1	
Carbon Tetrachloride	ND	0.0031	1		4-Methyl-2-Pe	ntanone		ND	0.0061	1	
Chlorobenzene	ND	0.0023	1		o-Xylene			ND	0.0022	1	
Chloroethane	ND	0.0013	1		p/m-Xylene			ND	0.0087	1	
Chloroform	ND	0.0024	1		Styrene			ND	0.0064	1	
Chloromethane	ND	0.0010	1		Tert-Amyl-Met	hyl Ether (1	TAME)	ND	0.0084	1	
Dibromochloromethane	ND	0.0043	1		Tert-Butyl Alco	ohol (TBA)		ND	0.0061	1	
Dichlorodifluoromethane	ND	0.0025	1		Tetrachloroeth	ene		ND	0.0034	1	
Diisopropyl Ether (DIPE)	ND	0.0084	1		Toluene			ND	0.0019	1	
1,1-Dichloroethane	ND	0.0020	1		Trichloroethen			ND	0.0027	1	
1,1-Dichloroethene	ND	0.0020	1		Trichlorofluoro	methane		ND	0.0056	1	
1,2-Dibromoethane	ND	0.0038	1		1,1,2-Trichlord	o-1,2,2-Trifl	uoroethane	ND	0.011	1	
Dichlorotetrafluoroethane	ND	0.014	1		1,1,1-Trichlord	bethane		ND	0.0027	1	
1,2-Dichlorobenzene	ND	0.0030	1		1,1,2-Trichlord	bethane		ND	0.0027	1	
1,2-Dichloroethane	ND	0.0020	1		1,3,5-Trimethy	lbenzene		ND	0.0025	1	
1,2-Dichloropropane	ND	0.0023	1		1,1,2,2-Tetrac	hloroethane	9	ND	0.0069	1	
1,3-Dichlorobenzene	ND	0.0030	1		1,2,4-Trimethy	lbenzene		ND	0.0074	1	
1,4-Dichlorobenzene	ND	0.0030	1		1,2,4-Trichloro	benzene		ND	0.015	1	
c-1,3-Dichloropropene	ND	0.0023	1		Vinyl Acetate			ND	0.0070	1	
c-1,2-Dichloroethene	ND	0.0020	1		Vinyl Chloride			ND	0.0013	1	
t-1,2-Dichloroethene	ND	0.0020	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>c</u>	Qual
1,4-Bromofluorobenzene	101	57-129			1,2-Dichloroet	hane-d4		112	47-137		
Toluene-d8	98	78-156									

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Method:

Units:

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

TED	IN ACC	ORDAN
RED.		C m
ACCA	E	

Page 20 of 28

	A TOPOLO
Date Received:	11/22/10
Work Order No:	10-11-1740
Preparation:	N/A

EPA TO-15 ug/L

Page 18 of 19

Project: DFSP-Norwalk / VMP

Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
Method Blank			09	5-01-021-8,848	N/A	Air	GC/MS YY	N/A	11/22 14:4		101122L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acetone	ND	0.0048	1		t-1,3-Dichlorop	oropene		ND	0.0045	1	
Benzene	ND	0.0016	1		Ethyl-t-Butyl E	ther (ETBE	=)	ND	0.0084	1	
Benzyl Chloride	ND	0.0078	1		Ethylbenzene			ND	0.0022	1	
Bromodichloromethane	ND	0.0034	1		4-Ethyltoluene			ND	0.0025	1	
Bromoform	ND	0.0052	1		Hexachloro-1,	3-Butadiene	e	ND	0.016	1	
Bromomethane	ND	0.0019	1		2-Hexanone			ND	0.0061	1	
2-Butanone	ND	0.0044	1		Methyl-t-Butyl	Ether (MTE	BE)	ND	0.0072	1	
Carbon Disulfide	ND	0.0062	1		Methylene Chl	oride		ND	0.017	1	
Carbon Tetrachloride	ND	0.0031	1		4-Methyl-2-Pe			ND	0.0061	1	
Chlorobenzene	ND	0.0023	1		o-Xylene			ND	0.0022	1	
Chloroethane	ND	0.0013	1		p/m-Xylene			ND	0.0087	1	
Chloroform	ND	0.0024	1		Styrene			ND	0.0064	1	
Chloromethane	ND	0.0010	1		Tert-Amyl-Met	hyl Ether (1	ΓΑΜΕ)	ND	0.0084	1	
Dibromochloromethane	ND	0.0043	1		Tert-Butyl Alco	hol (TBA)	,	ND	0.0061	1	
Dichlorodifluoromethane	ND	0.0025	1		Tetrachloroeth	ene		ND	0.0034	1	
Diisopropyl Ether (DIPE)	ND	0.0084	1		Toluene			ND	0.0019	1	
1,1-Dichloroethane	ND	0.0020	1		Trichloroethen	е		ND	0.0027	1	
1,1-Dichloroethene	ND	0.0020	1		Trichlorofluoro	methane		ND	0.0056	1	
1,2-Dibromoethane	ND	0.0038	1		1,1,2-Trichloro	-1,2,2-Trifl	uoroethane	ND	0.011	1	
Dichlorotetrafluoroethane	ND	0.014	1		1,1,1-Trichlord	ethane		ND	0.0027	1	
1,2-Dichlorobenzene	ND	0.0030	1		1,1,2-Trichloro	ethane		ND	0.0027	1	
1,2-Dichloroethane	ND	0.0020	1		1,3,5-Trimethy	lbenzene		ND	0.0025	1	
1,2-Dichloropropane	ND	0.0023	1		1,1,2,2-Tetrac	hloroethane	Э	ND	0.0069	1	
1,3-Dichlorobenzene	ND	0.0030	1		1,2,4-Trimethy	lbenzene		ND	0.0074	1	
1,4-Dichlorobenzene	ND	0.0030	1		1,2,4-Trichlord	benzene		ND	0.015	1	
c-1,3-Dichloropropene	ND	0.0023	1		Vinyl Acetate			ND	0.0070	1	
c-1,2-Dichloroethene	ND	0.0020	1		Vinyl Chloride			ND	0.0013	1	
t-1,2-Dichloroethene	ND	0.0020	1		-				-		
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			<u>REC (%)</u>	<u>Control</u> Limits	<u>(</u>	Qual
1,4-Bromofluorobenzene	106	57-129			1.2-Dichloroet	nane-d4		103	47-137		
Toluene-d8	97	78-156			,						

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

DIN	O O R	DAN
		Cm
		nela

Date Received:	11/22/10
Work Order No:	10-11-1740
Preparation:	N/A
Method:	EPA TO-15
Units:	ug/L
	Page 19 of 19

Project: DFSP-Norwalk / VMP

-										•	
Client Sample Number				Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
Method Blank			09	5-01-021-8,856	N/A	Air	GC/MS ZZ	N/A	11/23 15:		101123L01
Parameter	<u>Result</u>	<u>RL</u>	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Acetone	ND	0.0048	1		t-1,3-Dichlorop	propene		ND	0.0045	1	
Benzene	ND	0.0016	1		Ethyl-t-Butyl E	ther (ETBE	Ξ)	ND	0.0084	1	
Benzyl Chloride	ND	0.0078	1		Ethylbenzene			ND	0.0022	1	
Bromodichloromethane	ND	0.0034	1		4-Ethyltoluene	;		ND	0.0025	1	
Bromoform	ND	0.0052	1		Hexachloro-1,	3-Butadien	е	ND	0.016	1	
Bromomethane	ND	0.0019	1		2-Hexanone			ND	0.0061	1	
2-Butanone	ND	0.0044	1		Methyl-t-Butyl	Ether (MTI	BE)	ND	0.0072	1	
Carbon Disulfide	ND	0.0062	1		Methylene Chl	loride		ND	0.017	1	
Carbon Tetrachloride	ND	0.0031	1		4-Methyl-2-Pe	ntanone		ND	0.0061	1	
Chlorobenzene	ND	0.0023	1		o-Xylene			ND	0.0022	1	
Chloroethane	ND	0.0013	1		p/m-Xylene			ND	0.0087	1	
Chloroform	ND	0.0024	1		Styrene			ND	0.0064	1	
Chloromethane	ND	0.0010	1		Tert-Amyl-Met	thyl Ether (TAME)	ND	0.0084	1	
Dibromochloromethane	ND	0.0043	1		Tert-Butyl Alco	ohol (TBA)		ND	0.0061	1	
Dichlorodifluoromethane	ND	0.0025	1		Tetrachloroeth	nene		ND	0.0034	1	
Diisopropyl Ether (DIPE)	ND	0.0084	1		Toluene			ND	0.0019	1	
1,1-Dichloroethane	ND	0.0020	1		Trichloroethen	ne		ND	0.0027	1	
1,1-Dichloroethene	ND	0.0020	1		Trichlorofluoro	omethane		ND	0.0056	1	
1,2-Dibromoethane	ND	0.0038	1		1,1,2-Trichloro	o-1,2,2-Trif	uoroethane	ND	0.011	1	
Dichlorotetrafluoroethane	ND	0.014	1		1,1,1-Trichlord	oethane		ND	0.0027	1	
1,2-Dichlorobenzene	ND	0.0030	1		1,1,2-Trichloro	oethane		ND	0.0027	1	
1,2-Dichloroethane	ND	0.0020	1		1,3,5-Trimethy	lbenzene		ND	0.0025	1	
1,2-Dichloropropane	ND	0.0023	1		1,1,2,2-Tetrac	hloroethan	е	ND	0.0069	1	
1,3-Dichlorobenzene	ND	0.0030	1		1,2,4-Trimethy	lbenzene		ND	0.0074	1	
1,4-Dichlorobenzene	ND	0.0030	1		1,2,4-Trichlor	obenzene		ND	0.015	1	
c-1,3-Dichloropropene	ND	0.0023	1		Vinyl Acetate			ND	0.0070	1	
c-1,2-Dichloroethene	ND	0.0020	1		Vinyl Chloride			ND	0.0013	1	
t-1,2-Dichloroethene	ND	0.0020	1		-						
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>(</u>	Qual
1,4-Bromofluorobenzene	102	57-129			1,2-Dichloroet	hane-d4		113	47-137		
Toluene-d8	96	78-156									

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ,

MM

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received:N/AWork Order No:10-11-1740Preparation:N/AMethod:EPA TO-15

Project: DFSP-Norwalk / VMP

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal <u>i</u>		LCS/LCSD Numbe	
095-01-021-8,848	Air	GC/MS YY	N/A	11/22/	/10	101122L	D1
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	100	107	60-156	44-172	7	0-40	
Carbon Tetrachloride	104	112	64-154	49-169	7	0-32	
1,2-Dibromoethane	126	141	54-144	39-159	12	0-36	
1,2-Dichlorobenzene	112	118	34-160	13-181	5	0-47	
1,2-Dichloroethane	99	100	69-153	55-167	1	0-30	
1,2-Dichloropropane	97	104	67-157	52-172	7	0-35	
1,4-Dichlorobenzene	119	126	36-156	16-176	5	0-47	
c-1,3-Dichloropropene	111	118	61-157	45-173	6	0-35	
Ethylbenzene	125	139	52-154	35-171	11	0-38	
o-Xylene	127	141	52-148	36-164	10	0-38	
p/m-Xylene	127	141	42-156	23-175	11	0-41	
Tetrachloroethene	122	137	56-152	40-168	12	0-40	
Toluene	123	139	56-146	41-161	12	0-43	
Trichloroethene	101	108	63-159	47-175	7	0-34	
1,1,2-Trichloroethane	101	108	65-149	51-163	6	0-37	
Vinyl Chloride	102	103	45-177	23-199	1	0-36	

Total number of LCS compounds : 16

Total number of ME compounds : 0

Total number of ME compounds allowed : 1

LCS ME CL validation result : Pass

n M

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

N/A

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received: N/A Work Order No: 10-11-1740 Preparation: Method: EPA TO-15

Project: DFSP-Norwalk / VMP

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal <u>y</u>		LCS/LCSD I Numbe	
095-01-021-8,841	Air	GC/MS ZZ	N/A	11/22/	'10	101122L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	104	105	60-156	44-172	0	0-40	
Carbon Tetrachloride	111	113	64-154	49-169	1	0-32	
1,2-Dibromoethane	118	118	54-144	39-159	0	0-36	
1,2-Dichlorobenzene	103	97	34-160	13-181	6	0-47	
1,2-Dichloroethane	108	111	69-153	55-167	3	0-30	
1,2-Dichloropropane	109	110	67-157	52-172	1	0-35	
1,4-Dichlorobenzene	102	96	36-156	16-176	5	0-47	
c-1,3-Dichloropropene	118	119	61-157	45-173	1	0-35	
Ethylbenzene	106	105	52-154	35-171	1	0-38	
o-Xylene	107	105	52-148	36-164	1	0-38	
p/m-Xylene	105	106	42-156	23-175	0	0-41	
Tetrachloroethene	114	115	56-152	40-168	1	0-40	
Toluene	105	106	56-146	41-161	1	0-43	
Trichloroethene	107	107	63-159	47-175	1	0-34	
1,1,2-Trichloroethane	107	107	65-149	51-163	0	0-37	
Vinyl Chloride	106	109	45-177	23-199	2	0-36	

Total number of LCS compounds : 16

Total number of ME compounds : 0

Total number of ME compounds allowed : 1

LCS ME CL validation result : Pass

n M

RPD - Relative Percent Difference, CL - Control Limit

> 7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 . FAX: (714) 894-7501

Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002 Date Received:N/AWork Order No:10-11-1740Preparation:N/AMethod:EPA TO-15

Project: DFSP-Norwalk / VMP

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal <u>i</u>		LCS/LCSD I Numbe	
095-01-021-8,856	Air	GC/MS ZZ	N/A	11/23/	/10	101123L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	103	104	60-156	44-172	1	0-40	
Carbon Tetrachloride	113	114	64-154	49-169	1	0-32	
1,2-Dibromoethane	115	118	54-144	39-159	3	0-36	
1,2-Dichlorobenzene	95	99	34-160	13-181	4	0-47	
1,2-Dichloroethane	109	109	69-153	55-167	1	0-30	
1,2-Dichloropropane	105	107	67-157	52-172	2	0-35	
1,4-Dichlorobenzene	94	99	36-156	16-176	5	0-47	
c-1,3-Dichloropropene	115	113	61-157	45-173	2	0-35	
Ethylbenzene	102	106	52-154	35-171	4	0-38	
o-Xylene	103	107	52-148	36-164	4	0-38	
p/m-Xylene	100	105	42-156	23-175	4	0-41	
Tetrachloroethene	115	117	56-152	40-168	2	0-40	
Toluene	103	107	56-146	41-161	3	0-43	
Trichloroethene	105	107	63-159	47-175	2	0-34	
1,1,2-Trichloroethane	99	106	65-149	51-163	7	0-37	
Vinyl Chloride	90	95	45-177	23-199	5	0-36	

Total number of LCS compounds : 16

Total number of ME compounds : 0

Total number of ME compounds allowed : 1

LCS ME CL validation result : Pass

n M

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Glossary of Terms and Qualifiers

Work Order Number: 10-11-1740

Qualifier	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution,
	therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The
	associated method blank surrogate spike compound was in control and, therefore, the
	sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out
	of control due to matrix interference. The associated LCS and/or LCSD was in control
4	and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD
5	was in control and, therefore, the sample data was reported without further clarification. The PDS/PDSD or PES/PESD associated with this batch of samples was out of control
5	due to a matrix interference effect. The associated batch LCS/LCSD was in control and,
	hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
J	Analyte was detected at a concentration below the reporting limit and above the
-	laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter
	concentration in the sample exceeding the spike concentration by a factor of four or
	greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

hM 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Ca	alscience E	Calscience Environmental	La	boratories, Inc.	ies, In	പ					Ч	AIN O	DF C	UST	60	/ RE	CHAIN OF CUSTODY RECORD	۵
	SoCal Laboratory			al Service Center	r So Suito L						Date		-	QI-61-II	0			
	Garden Grove, CA 92841-1427 (714) 805-5404	v 92841-1427	Concord	Concord, CA 94520-8577	577						d de			, ⁴				1
	1141 020-0494		00 (076)	7708-8							- 69		┥					1
							IT PROJE	CLIENT PROJECT NAME / NUMBER	NUMBE	د.			P.O. NO.	NO.				
ADDRESS:							DFSP-Norwa	rwa/k	Z	VmP			75	747576	76			l
	100 W. Walnut	St				PROJ	ECT CON	FACT:					LAB	LAB USE ONLY	 		[
CITY	c		STATE		ZIP		<i>Aary</i>	Luco	\$				-	_		4	7	0
, ,	lasalen		СA			SAMP	LER(S). (F	SAMPLER(S), (PRINT)		COE	COELT LOG CODE	ODE	- 0 0	COOLER RECEIPT	CEIPT			
150- 665-	8336 E-W	2	lucas @ Barsons, com	S.Com		Glei	n A	Glenn Androska	9				TEMP=	å			-	ပ္
TURNAROUND TIME	24 HR	48 HR 72 HR	N STANDA	DARD					REQ	REQUESTED		ANALYSES	ΓX	SES				
	ANOI 0	OSTS MAY APPLY)]				((-		-				-		
	UN LING FURING					 	(44)							[9	·			
	SIONS:						0-90) r	or (()		or 218.	(GI-0			
							0 (96ጋ-i	(80928)	(8092			r (85700	.10B/14	6617 JO		+[····	
						<u> </u>	or (CE	260B)		(8520) (8520)	108) se			A301		ε-0T]		
LAB		FIELD POINT NAME	SAMF	SAMPLING	-	(6) H						8) 28 8) 28		2] (IV		(6) ⊢		
	SAMPLE ID	(FOR COELT EDF)	DATE	TIME	MATRIX OF CONT.		IqT							Cr()				
- JMP-	VMP-32-05-111910		Q <i>I-61- </i>	1230	A.r 1										×			
2 VMP- 3	VMP-32-15-11910		,	1235											×			
3 VMP-3	VMP- 33-05-11/910		/	1320											×			
4 VMP-3	VMP-33-15-14910			1330	1										×			ļ
S -9mV 3	VMP- 34-05-111910			1345	1										×			
6 VMP-3	VMP- 34-15-11/110			1350											×			
7 VMP-35	VMP-35-05-11/910			1420	1										×			
SC VMP-35	VMP-35-05-111910 Dup			1421											×			
9 VMP-33	VMP-35-15-11/910		_	1430	1										×			
10 NMP-F	VMP-Field Blank-111910	0	シ	1433	[433 d 1										×			
Relinquished by: (Signature)	(Signature)	Sec. 1		Receiv	ed by: (Sign	ature/Affil	ation)	1	e el	12		Date))))	1		Time:	040	
Relinquished by: (Signature)	ч	- INVALATION	کر	Receiv	Received by: (Signature/Affiliation)	ature/Affil	ation)				-	Date		3		Time:	5	
R	X				1					N. M.	u k	1	1221	110		1100	0	
Relinquished by: (Signature)	(Signature)			Receiv	Received by: (Signature/Affiliation)	ature/Affili	ation)					Date:		-		Time:		
DISTRIB	3UTION: White with final	DISTRIBUTION: White with final report, Green and Yellow to Client.	to Client.													5/01/01	05/01/07 Revision	5

. 1

· 11

ł

i E I i

1

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.

2026-88-995-26-0f-28

🔬 Calscience Environmental	nvironment	La	boratories, Inc.	с о		CHA	IN OF	CUST	YOD Y	CHAIN OF CUSTODY RECORD	ð
2440 Lincoln Way		NorCal Service Center 5063 Commercial Circl	Center ial Circle, Suite H			Date		0/-51-11	0		
Garden Grove, CA 92841-1427 (714) 895-5494	.92841-1427	Concord, CA 94 (925) 689-9022	Concord, CA 94520-8577 (925) 689-9022			Page		<mark>ر</mark> ور	2		
LABORATORY CLIENT:				CLIENT PROJ	CLIENT PROJECT NAME / NUMBER:			P.O. NO.:			
				DESP - Normalk	\ _	Jump		747574	276		
00 W. U	זע לשנ	STATE	۵۲				<u>. </u>			ר ר	<
Pasadena	U		51L	SAMPLER(S) (PRINT)	<u>/ Lucas</u> (PRINT)	COELT LOG CODE					2
3 (-MAIL: Maxilucas@Parsons	MSMS, COM.		Clenn Androsko	rdrosko			TEMP=			ပ
TURNAROUND TIME:] 48 HR		10 DAYS		REQ		ANALYSES	SES			
SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)	OSTS MAY APPLY)			((
SPECIAL INSTRUCTIONS:				-C44				[9'81	(
				. (37-536) مر (57	(809 <u>7</u> 8) sa	53) (8081¥) 520C) eb (2032)	(0) or (8270C)	(X747/80109) s 2 o 661 or 2 2 o 661 or 2	(21-OT) 0 (A41-		
LAE	EIELD DOINT NAME	SAMPLING	NO.	o (p) (6)	.M / X 28) s(denat	8) sO(e (83.			1 (6)	
USE SAMPLE ID	(FOR COELT EDF)	DATE TIME	MATRIX OF	HqT	DOV VOC	DV2	∀Nd				
11 VMP-36-05-111910		11-19-10 1455	SS Air 1						×		
12 NMP-36-15-11,1910		1 1500							×		
13 VMP-39-05-111910		1520	50 1						×		
1/1 VMP- 37-15-11A10		1525	ر ا						×	-	
15 VmP-38-05-11P10		1550	00						メ		
16 VMP-38-15-11 A10		r 1555	ST L						×		
*			•								
										-	
Dolinovind bur (Cinnet in)											
N	ahr		Received by: (Signature/Attilitation)	ature/Amiliation.)		120		Sher.	F	1020	
Relinquished by: (Signature)			Réceived by: (Signature/Affiliation)	ature/Affiliation)	N.	2 auto	Date:	2/10	<u>—</u>	Time: [00	
Relinquished by: (Signature)			Received by: (Signature/Affiliation)	ature/Affiliation)	11	A man al	Date:	- 	F 	Time:	
DISTRIBUTION: White with final report, Green and Yellow to Client.	report, Green and Yellow	to Client.								10/01/07 Revision	

THE REAL PROPERTY.

5 F

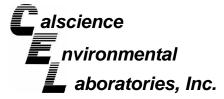
I

 $(1,\ldots,1,\ldots,2,\ldots,1,\ldots,n)$

15

2026-868-922-127_0f.28

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.


15

			Pa	ige 28 of 28
Environmental	WORK ORDER #:	10-1	1-[]	740
Laboratories, Inc.				a >
SAMPLE	RECEIPT FO	RM	Cooler _	\bigcirc of \bigcirc
CLIENT: Parsons Inc.		DATE:	11/2	2 2/10
TEMPERATURE: Thermometer ID: SC1 (Criteria		n)		
Temperature•°C + 0.5 °C (CF)	-	, Blank	🗆 Sam	nlo
				pie
Sample(s) outside temperature criteria (PM/APM		f	- P	
□ Sample(s) outside temperature criteria but receiv			pling.	
□ Received at ambient temperature, placed on Ambient Temperature:	i ice for transport by Co	burier.		. NP
Ambient Temperature: Z Air D Filter				al: <u>//</u>
CUSTODY SEALS INTACT:				
□ Cooler □ □ No (Not In	tact)	-DN/A	lnit	ial:
□ Sample □ □ No (Not In	tact) Z Not Present		Initi	ial: <u>}</u>
	· · · · · · · · · · · · · · · · · · ·			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SAMPLE CONDITION:		Yes	No	N/A
Chain-Of-Custody (COC) document(s) received w	·	1		
COC document(s) received complete	• • • • • • • • • • • • • • • • • • • •	. Ø		
Collection date/time, matrix, and/or # of containers logo	ged in based on sample labels			
	No date/time relinquished.	/		
Sampler's name indicated on COC				
Sample container label(s) consistent with COC		/		
Sample container(s) intact and good condition				
Proper containers and sufficient volume for analys	•			
Analyses received within holding time	:	1		
pH / Residual Chlorine / Dissolved Sulfide receive				
Proper preservation noted on COC or sample con	tainer			ø
Unpreserved vials received for Volatiles analysis		_	_	
Volatile analysis container(s) free of headspace				₽́
Tedlar bag(s) free of condensation		. []		arphi
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □St	eeve () □EnCore	s [®] □Terr	aCores® 🗆]
Water: VOA VOAh VOAna ₂ 125AGB	125AGBh □125AGBp	□1AGB	□1AGB na ;	₂ □1AGB s
□500AGB □500AGJ □500AGJs □250AGB	□250CGB □250CGBs	□1PB	□500PB □	1500PB na
□250PB □250PBn □125PB □125PBznna □1	00PJ □100PJ na₂ □	□	C]
Air: □Tedlar [®] ØSumma [®] Other: □ T Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Botti Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PC	e Z: Ziploc/Resealable Bag E:	Envelope	/Checked by Reviewed b Scanned b	y: Pit

ې د ۱۹۹۹ د ۲۹۹۹ ا ۲۹۹۹ د ۲۹۹۹ د ۲۹۹۹ د ۲۰

SOP T100_090 (09/13/10)

а. — а. — 1

Page 1 of 12

Supplemental Report 1

November 15, 2010

Subcontract analyses are reported as a stand-alone report.

Mary Lucas Parsons, Inc. 100 West Walnut Street Pasadena, CA 91124-0002

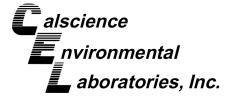
Subject: Calscience Work Order No.: 10-10-2159 Client Reference: DFSP Norwalk / 747565

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 10/27/2010 and analyzed in accordance with the attached chain-of-custody.


Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.


Sincerely,

Ranjit V. J. Clarke

Calscience Environmental Laboratories, Inc. Ranjit Clarke Project Manager

NELAP ID: 03220CA · DoD-ELAP ID: L10-41 · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Work Order Case Narrative

Project Name: DFSP Norv Calscience Work Order Number: 10-10-2159

DFSP Norwalk / 747565 10-10-2159

1. <u>Subcontract Analyses:</u>

This report contains only the analyses performed by Core Laboratories. The following analyses are included:

- pore fluid saturation using American Petroleum Institute Method RP40
- grain size distribution using ASTM International Methods D422 /D4464.

Three sleeves were submitted to Core Labs in order to have enough sample volume to perform the required analyses. Upon visual inspection, Core determined that two of the sleeves, though collected from the same sampling point, appeared to be very dissimilar in composition. As a result, Core Labs felt that it was prudent to analyze these sleeves as individual samples. The results for both sleeves are included herein.

As mentioned in the narrative of the Core report, the physical results for the aliquots obtained from the two sleeves were fairly similar. It may be possible to take the average of the two results and use that number as being representative of the sample.

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX:(714) 894-7501

\mathbf{a}	1 1					~	eifin q	1445	iQ *	2.5	1.010	/ ×							1	1	Ę
N N				A			nort		25 P.	10)3	210	-					 	5	2		06/01/10 Revision
ŭ				5 ie					1040	P.I.A	ha		×	X	×			1359	413		110 R
X R			(TN	20					 [8-0] (6) F	IqT - 1iA							Time:	Time:	Time:	06/01
			(): (PR	Kinnebrew				er-ot)	10 (A41-	-OT) 20	NV - 1iA									†	-
JST	^م (2	.: 0	SAMPLER(S): (PRINT)		10			[9.812	7199 OL	10 961.	7] (IV)10							ろう	T	+	
ដ	.12	P.O. NO.:	SAMP	Quîn				((X747\01	.09) sla	T22 Met							i) V	14	1.	
Ö	<u>10.27.10</u>				ANAL				(0728)	310) or	8)							Date: 10-27-10	Date:	Date	
CHAIN OF CUSTODY RECORD										(280	PCBs (8										
С С	Date		747565		STED				(1	808) se	Pesticide										
		4	47.		<u>ເ</u>					(0728)	SVOCs										
			\mathbf{N}		REQUE		(g	603) qə	Core Pro	errəT \	En Core							1			
		NUMB	alk	n	Ш Ш Ш				(09)		охудела						2	₿ \$	C 21		
		ME /	Xorwalk Act:	lucas							8) sOOv	~ ×	×	X	×			t and a set			
				7	i	()	9260) or									ञ्चि	X		el <u>k</u>
		ROJE		518	ŀ	() H9T	(×	×	×	×			हिर्भ) E	\$	specti
	#/ [7]	ENTE	DFSP-	Mary		(†	+O-9O)	C36) or) or (C6-								 		A C L	ffiliati	ies ret
	ĕ2	5 (- A				1	T	(or GRC	(g) H913	く メ	×	X	×			影	DMI V	ture/	w cop
С.				9/124						ltered	if blaif						 	(Signature)	Received by: (Signature/Affiliation)	Received by: (Signature/Affiliatio	1 Yello
				AIZ M			LOG CODE			pə	Preserv); Maria	l by: (l by: (en and
ies	uite F						POG			рэлэ	SənqnU							Received by:	ceived	ceived	e Gre
Ę	NorCal Service Center 5063 Commercial Circle, Suite H Concord, CA 94520-8577 (925) 689-9022										NO. OF CONT.	01	00	æ	~			Ъес Кес	Rec	Rec	e of th
) ra	Cente tal Cir 1520-t					ARD					£		-	~	0	 · .					se side
đ	Prvice Timerc CA 9/ -9022					STANDARD					MATRIX	50:1	_		→						it. revers
<u>_</u>	Cal Se 3 Con cord,) 689		+	Þ.		X s1								G	6			;	-		Clien on the
tal			Street	STATE							TIME	1147	1218	1319	34			3	- 1		llow to nted o
en			く]72 HR					SAMPLING	-				 		Ż			nd Yel
m			+	-		2					SAMI	10						- n	1		een al T/Cs a
ē	-1427		i Jalnut								DATE	10.27.10	-		\rightarrow		7	N.	Цß		or G
Ņ	32841		3	a	E-MAIL:							10.									al repo
Ш	SoCal Laboratory 7440 Lincoln Way Garden Grove, CA 92841-1427 (714) 895-5494	20	3	Pasadena	ш́		e										<	() J	હિં		and 2
D Ce	SoCal Laboratory 7440 Lincoln Way Garden Grove, CA (714) 895-5494	Parsons	0	50	36	HR	GLOBAL ID								- 1						hite w Iges 1
<u>ler</u>	Cal La 10 Lin den (4) 89(1 V a	100	l Å	83] 24 HR	ซี	- iii			SAMPLE ID	B	0	30	22-			ature.	attice	ature	DN: W
SC	244 (74 (71 (71 (71)) (71)) (71) (71) (71) (71)	ENT			5	ц Ц		CTION			AMP	-2	-30	2-,				(Sign	eig)	(Sign	BUTI0
Calscience Environmental Laboratories, Inc.		RY CL			e l	IND TI	L EDF	STRU			, v	4 V- 5-28	UV-2-30	UV-12-30	01-NN			od by:	ÈÉ	nd by:	DISTRIBUTION: White with final report, Green and Yellow to Client. Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.
	filler IDan 🆿	LABORATORY CLIENT	ESS:		626-665-8336	TURNAROUND TIME	COELT EDF	SPECIAL INSTRUCTIONS				3	5	Z	び			Relinquished by: (Signature)	Reinpushed by (Signature)	Relinquished by: (Signature)	
ľ.		LABO	ADDRESS	CITY	LEL.	TURN SA		SPEC			LAB USE ONLY	-	Ц	8	4			Relin	Rei	Relin	
	•	L	ł	L	L	L	L				L								L	<u>ــــــــــــــــــــــــــــــــــــ</u>	_

apa mana ina

ı

٠ŧ

lii st si

/

ŧ. ł.

Page 3 of 12

and and a ē.

+0

s and in a g

~				Page 4	4 of 12
Calscience Environmental	WOR	K ORDER #:	10-1()-27	\$9
Laboratorles, Inc.	E REC	EIPT FOI	RM (Cooler 🥧	of /
CLIENT: Parsons				10/27	
TEMPERATURE: Thermometer ID: SC1 (Crite	eria: 0.0 °C -	· 6.0 °C, not frozei	n)		
Temperature $\underline{l} \cdot \underline{k} \circ C + 0.5 \circ C$ (C	(F) = 2	<u>- 3</u> °C I	⊠ Blank	□ Sample	
☐ Sample(s) outside temperature criteria (PM/A					
□ Sample(s) outside temperature criteria but red			ay of sampli	ng.	
☐ Received at ambient temperature, placed				J	
Ambient Temperature: Air Filter				Initial:	6C
CUSTODY SEALS INTACT:		_			
□ Cooler □ □ No (No	t Intact)	☑ Not Present	□ N/A	Initial:	hC
□ Sample □ □ No (No	t Intact)	Not Present		Initial:	P2_
SAMPLE CONDITION:			Vee	Nie	N1/A
	d with comr		Yes	No	N/A
Chain-Of-Custody (COC) document(s) receiver COC document(s) received complete					
Collection date/timè, matrix, and/or # of containers					
□ No analysis requested. □ Not relinquished. Sampler's name indicated on COC		-			
Sample container label(s) consistent with COC					
Sample container(s) intact and good condition.					
Proper containers and sufficient volume for and					
Analyses received within holding time					
pH / Residual Chlorine / Dissolved Sulfide rece					
Proper preservation noted on COC or sample of			WSL		
□ Unpreserved vials received for Volatiles analys			10-27-10		
Volatile analysis container(s) free of headspace			. 🗆		
Tedlar bag(s) free of condensation					
CONTAINED TYPE					
Solid: 40zCGJ 80zCGJ 160zCGJ	ÍSleeve (🚊) ⊠ÉnCores	s® □Terra	Cores [®] □	
Water: □VOA □VOAh □VOAna₂ □125AGI	3 □125AG	Bh □125AGBp	□1AGB〔	∃1AGB na₂ 🖾	1AGB s
□500AGB □500AGJ □500AGJs □250AG	B □250C	GB □250CGBs	□1PB [⊐500PB ⊡50	0PB na
□250PB □250PBn □125PB □125PBznna	□100PJ []100PJ na₂ □	□	□	···· , <u></u>
Air: □Tedlar [®] □Summa [®] Other: □ Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p:	Bottle Z: Ziploo	c/Resealable Bag E:	Envelope F	Reviewed by: /	ipse

SOP T100_090 (09/13/10)

Page 5 of 12 Petroleum Services Division 3437 Landco Dr. Bakersfield, California 93308 Tel: 661-325-5657 Fax: 661-325-5808 www.corelab.com

November 12, 2010

Ranjit Clarke Calscience Environmental Laboratories, Inc. 7440 Lincoln Way Garden Grove, CA 92641-1432

Re: Physical Properties Analyses Project: 10-10-2159 CL File No: 410094EN

Dear Mr. Clarke:

The final results of the pore fluid saturation and particle-size distribution determinations performed upon the sample from your 10-10-2159 Project are presented in the attached file. The portions of the sample were not as dissimilar as they appeared from a quick visual examination. I have included the results for both of the sample portions tested but will bill for a single sample.

Appropriate ASTM, EPA or API methodologies were used for this project and SOP's are available on request. The sample was used up during the course of the testing.

We appreciate the opportunity to be of service to Calscience Environmental Laboratories, Inc. and trust these data will prove beneficial in the development of this project. Please do not hesitate to contact us (661-325-5657) if you have any questions regarding these results, or we can be of any additional service.

Sincerely, Core Laboratories

effry I Smith

Jeffry L. Smith ARP-Supervisor

Page 6 of 12 Petroleum Services Division 3437 Landco Dr. Bakersfield, California 93308 Tel: 661-325-5657 Fax: 661-325-5808 www.corelab.com

Encl.

PORE FLUID SATURATION DATA

PETROLEUM SERVICES

Calscience Environmental Laboratories, Inc.

Core Lab File No: 410094EN

Project No: 10-10-2159

		METHODS:	API RP 40 / ASTM D2216	API F	RP 40	API I	RP 40	API F	RP 40
		SAMPLE	MOISTURE	DENSIT	Y, g/cc	POROSIT	Y, %Vb (2)	PORE	FLUID
SAMPLE	DEPTH,	ORIENTATION	CONTENT,	DRY BULK	GRAIN	TOTAL	AIR	SATURATIO	NS, % Pv (3)
ID.	ft.	(1)	percent	DRTBULK	GRAIN	TOTAL	FILLED	WATER	NAPL
UV-5-28-B	NA	V	19.3	1.74	2.69	35.4	1.1	87.6	9.4
UV-5-28-D	NA	V	15.7	1.80	2.69	32.9	4.5	84.1	2.3

(1) Sample Orientation: H = horizontal; V = vertical

(2) Total Porosity = no pore fluids in place; all interconnected pore channels; Air Filled = pore channels not occupied by pore fluids

(3) Water = 0.9996 g/cc, Hydrocarbon = 0.80 g/cc;

Vb = Bulk Volume, cc; Pv = Pore Volume, cc; ND = Not Detected

|--|

SIEVE and LASER PARTICLE SIZE SUMMARY

(METHODOLOGY: ASTM D422/D4464M)

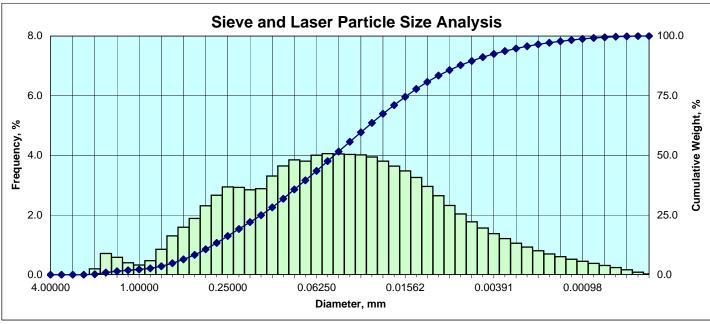
Petroleum Services

Co. : Calscience Environmental Laboratories, Inc. Proj. No. : 10-10-2159

Core Lab File No:57111-410094EN Date:11/4/2010

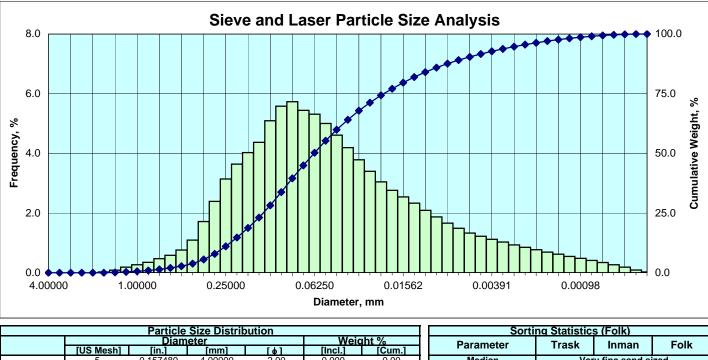
	Grain Size	Median			ပိ	mponent P	it Percentages	les			Silt
_	Description	Grain Size,				Sand Size					ళ
	(Mean from Folk)	mm	Gravel	>	Coarse Coarse	Medium	Fine	VFine	Silt	Clay	Clay
	÷				00					0 1	L (L
	SIIT	GU.U	0.20	2.03	4.22	9.81	11.96	15.31	48.98	1.49	20.5
	silt	0.06	00.0	0.57	2.17	8.34	17.13	22.07	42.46	7.26	49.7

Company:Calscience Environmental Laboratories, Inc. Proj. No.:10-10-2159


Sieve and Laser Particle Size Analysis (Metric)

Sample			Compo	Component Percentages	ercen	tages							Perce	Percentiles						Sorting	3 Statisti	Sorting Statistics (Folk)	
٩	Gravel			Sand			Fii	Fines				Par	Particle Diameter (I	meter (m	(mm)				Median	Mean	Sorting	Skew.	Kurt.
		vcgr	cgr mgr fgr vfgr	mgr	fgr	vfgr	silt	silt clay	5	10	16	25	40	50	75	84	06	95	mm	mm	÷		
UV-5-28-B 0.20 2.03 4.22 9.81 11.96 15.31 48.98 7.49 0.58	0.20	2.03	4.22	9.81	11.96	15.31	48.98	7.49		0.3696	0.2532	0.1478	0.0727	0.0473	0.0153	0.0089	0.0053	0.0027	0.3696 0.2532 0.1478 0.0727 0.0473 0.0153 0.0089 0.0053 0.0027 0.047	0.047	2.385	2.385 0.033	0.972
									cgr	mgr	mgr	fgr	vfgr	silt	silt	silt	silt	clay	silt	silt	v. Poor	near sym	v. Poor hear sym mesokurtic
UV-5-28-D 0.00 0.57 2.17 8.34 17.13 22.07 42.46 7.26 0.3704 0.2636 0.1980 0.1392 0.0867 0.0630 0.0212 0.0111 0.0058 0.0026	0.00	0.57	2.17	8.34	17.13	22.07	. 42.46	7.26	0.3704	0.2636	0.1980	0.1392	0.0867	0.0630	0.0212	0.0111	0.0058	0.0026	0.063	0.052	2.123	2.123 0.245	1.079
									mgr	mgr	fgr	fgr	vfgr	vfgr	silt	silt	silt	clay	vfgr	silt	v. Poor	fine	mesokurtic

** Particle-size distribution pattern precludes calculation of these statistical parameters


CL File No. : 57111-410094EN Sample ID : UV-5-28-B

		Particle	Size Distrib	ution				Sorti	ng Statistic:	s (Folk)	
	[US Mesh]	Diam		F 1 1	Weid	aht %	Para	meter	Trask	Inman	Folk
	5	[in.] 0.157480	[mm] 4.00000	[þ] -2.00	[Incl.] 0.000	[Cum.] 0.00	Me	dian		Silt sized	
Granule	ő	0.132425	3.36359	-1.75	0.000	0.00				0.11 0.1200	
	7	0.111355	2.82843	-1.50	0.000	0.00		(in)	0.0019	0.0019	0.0019
	8 10	0.093638 0.078740	2.37841 2.00000	-1.25 -1.00	0.001 0.198	0.00 0.20		(0.0472	0.0472	0.0473
	10	0.066212	1.68179	-0.75	0.712	0.20		(mm)	0.0473	0.0473	0.0473
V Crse	14	0.055678	1.41421	-0.50	0.584	1.49	M	ean		Silt sized	
Sand	16	0.046819	1.18921	-0.25	0.404	1.90			-		
	<u>18</u> 20 25	0.039370	1.00000	0.00 0.25 0.50	0.328	2.23 2.70		(in)	0.0032	0.0019	0.0019
Coarse	20	0.033106 0.027839	0.84090 0.70711	0.25	0.473 0.852	2.70 3.55		(mm)	0.0816	0.0475	0.0474
Sand	30	0.023410	0.59460	0.75	1.300	4.85		(1111)	0.0010	0.0475	0.0474
•••••	35 40	0.019685	0.50000	1.00	1.591	6.44	So	rting		V. Poor	
	40	0.016553	0.42045	1.25	1.889	8.33					
Medium	45	0.013919	0.35355	1.50	2.311	10.64			3.113	0.188	2.385
Sand	50 60	0.011705 0.009843	0.29730 0.25000	1.75 2.00	2.666	13.31 16.25	Skey	vness	N	ear symmetri	cal
	<u>60</u> 70	0.008277	0.21022	2.25	2.942 2.926	19.18	ORCI	11033		ear symmetri	cai
Fine	80	0.006960	0.17678	2.50	2.847	22.02			1.004	0.111	0.033
Sand	100	0.005852	0.14865	2.75	2.884	24.91			-		
	120	0.004921	0.12500	3.00 3.25	3.307	28.22	Kur	tosis		Mesokurtic	
V. Fine	140 170	0.004138 0.003480	0.10511 0.08839	3.25 3.50	3.648 3.850	31.86 35.71			0.182	0.611	0.972
Sand	200	0.002926	0.07433	3.75	3.805	39.52			0.102	0.011	0.072
	230	0.002461	0.06250	4.00	4.007	43.53			ponent Perce		
	270	0.002069	0.05256	4.25	4.061	47.59	Gravel	Sand	Silt	Clay	Silt + Clay
	325 400	0.001740	0.04419 0.03716	4.50	4.051 4.032 4.014 3.946	51.64 55.67	0.20	39.32	52.99	7.49	60.48
Silt	450	0.001463 0.001230	0.03125 0.02628	5.00	4.014	55.67 59.68 63.63	0.20	00.02	02.00	7.45	00.40
	500	0.001035	0.02628	4.75 5.00 5.25 5.50	3.946	63.63					
	635	0.000870 0.000732	0.02210 0.01858	5.50 5.75	3.806	67.44 71.08		entile aht, %]	fin.1	article Diame [mm]	ter [phi]
		0.000615	0.01562	6.00	3.642 3.480 3.262 2.958	74.56			101.1		
		0.000517	0.01314 0.01105	6.00 6.25 6.50	3.262	74.56 77.82 80.78		5	0.0229	0.5814	0.7824
		0.000435 0.000366	0.01105 0.00929	6.50 6.75	2.958 2.650	80.78 83.43		10	0.0146	0.3696	1.4360
		0.000308	0.00781	7.00	2.323	85.75		10	0.0140	0.3090	1.4300
		0.000259	0.00657 0.00552	7.00 7.25 7.50	2.323 2.038 1.777	85.75 87.79 89.57		16	0.0100	0.2532	1.9818
		0.000217	0.00552 0.00465	7.50 7.75	1.777 1.567	89.57 91.13		25	0.0058	0 1 4 7 9	0 7570
		0.000183 0.000154	0.00465	7.75 8.00	1.375	91.13 92.51	1 '	20	0.0000	0.1478	2.7578
		0.000129	0.00328	8 25	1.211	93.72	4	40	0.0029	0.0727	3.7828
		0.000109 0.000091	0.00276 0.00232	8.50 8.75	1.057	94.78 95.70		50	0.0010	0.0473	4 4020
Clay		0.000091	0.00232	9.00	0.925 0.805	95.70 96.51	1	00	0.0019	0.0473	4.4020
		0.000065	0.00164	9.25 9.50	0.697	97.20		75	0.0006	0.0153	6.0346
		0.000054	0.00138	9.50	0.605 0.522	97.81		24	0.0004	0.0000	6 9000
		0.000046 0.000038	0.00116 0.00098	9.75	0.522 0.450	98.33 98.78	1	34	0.0004	0.0089	6.8093
		0.000032	0.00082	9.75 10.00 10.25 10.50 10.75	0.382 0.313	99.16	9	90	0.0002	0.0053	7.5654
		0.000027	0.00069	10.50	0.313	99.48			0.0004		0.5575
		0.000023 0.000019	0.00058 0.00049	10.75 11.00	0.242 0.169	99.72 99.89		95	0.0001	0.0027	8.5575
		0.000016	0.00041	11.25	0.085	99.97					•
		0.000015	0.00038	11.50	0.026	100.00	** Distributio	on pattern preclu	udes calculation of	of these statistic	al parameters.

CL File No. : 57111-410094EN Sample ID : UV-5-28-D

JS Mesh] 5 6 7 8	[in.] 0.157480 0.132425 0.111355	[mm] 4.00000 3.36359	-2.00	[Incl.] 0.000	[Cum.] 0.00	Parameter Median	Trask	Inman ry fine sand s	Folk
6 7 8	0.132425	3.36359	-2.00	0 000	0.00	Modian	Vo	rv fine sand s	izod
7 8		3.36359			0.00	Median	Ve		1260
8		2.82843	-1.75	0.000 0.000	0.00	(in)	0.0025	0.0025	0.0025
10	0.093638	2.37841	-1.50 -1.25	0.000	0.00	(,	0.0020	0.0020	0.0020
10	0.078740	2.00000	-1.00	0.000	0.00	(mm)	0.0630	0.0630	0.0630
12	0.066212	1.68179	-0.75	0.028	0.03				
14	0.055678	1.41421	-0.50	0.086	0.11	Mean		Silt sized	
10	0.046819	1.18921	-0.25	0.190	0.30	(in)	0.0032	0.0018	0.0020
20	0.033106	0.84090	0.25	0.351	0.92	(11)	0.0032	0.0010	0.0020
25	0.027839	0.70711	0.50	0.472	1.39	(mm)	0.0802	0.0469	0.0517
30	0.023410	0.59460	0.75	0.586	1 98				
		0.50000	1.00	0.759	2.74	Sorting		V. Poor	
40	0.016553	0.42045	1.25	1.093	3.83		2 563	0.237	2.123
50	0.011705	0.29730	1.50	2 389	7.93		2.000	0.257	2.125
60	0.009843	0.25000	2.00	3.144	11.08	Skewness		Finely skewe	d
70		0.21022	2.25	3.640	14.72				
			2.50	4.026	18.75		0.862	0.490	0.245
	0.005852	0.14865	2.75	4.368	23.11	Kurtosis		Mosokurtic	
		0.12500	3 25	5 580	33 79	Ruitosis		Westkullic	
170	0.003480	0.08839	3.50	5.732	39.52		0.229	0.720	1.079
200	0.002926	0.07433	3.75	5.444	44.96				
230	0.002461	0.06250	4.00	5.316	50.28				
270	0.002069	0.05256	4.25	5.004	55.28	Gravel Sand	Silt	Clay	Silt + Clay
400	0.001463	0.03716	4.75	4.191	64.09	0.00 44.96	47.78	7.26	55.04
450	0.001230	0.03125	5.00	3.783	67.87				
500	0.001035	0.02628	5.25	3.399	71.27	Porcontilo		artiala Diama	tor
035	0.000732	0.02210	5.75	2.762	77.08		[in.]		[phi]
	0.000615	0.01562	6.00		79.62				
	0.000517	0.01314	6.25	2.331	81.95	5	0.0146	0.3704	1.4329
	0.000435	0.01105	6.50	2.090	84.04 85.91	10	0.0104	0 2636	1.9233
	0.000308	0.00781	7.00	1.660	87.58				
	0.000259	0.00657	7.25	1.489	89.06	16	0.0078	0.1980	2.3367
	0.000217	0.00552	7.50	1.332	90.40	25	0.0055	0 1392	2.8451
	0.000154	0.00391	8.00	1.120	92.74				
	0.000129	0.00328	8.25	1 032	93.77	40	0.0034	0.0867	3.5270
	0.000109	0.00276	8.50	0.934	94.71	50	0.0025	0.0630	3.9890
	0.000077	0.00195	9.00	0.004	96.33	50	0.0025	0.0000	5.3030
	0.000065	0.00164	9.25	0.692	97.02	75	0.0008	0.0212	5.5611
	0.000054	0.00138	9.50	0.620	97.64	04	0.0004	0.0111	6.4946
	0.000038	0.00098	10.00	0.482	98.67	04	0.0004	0.0111	0.4940
	0.000032	0.00082	10.25	0.413	99.08	90	0.0002	0.0058	7.4226
	0.000027	0.00069	10.50	0.342	99.43	05	0.0001	0.0026	8.5837
	0.000023	0.00058	10.75	0.200	99.09 99.88	90	0.0001	0.0026	0.0037
	0.000016	0.00041	11.25	0.093	99.97				
	0.000015	0.00038	11.50	0.029	100.00	** Distribution pattern pr	ecludes calculation	of these statistic	al parameters.
_	30 35 40 45 50 60 70 80 100 120 140 170	18 0.039370 20 0.033106 25 0.027839 30 0.023410 35 0.019685 40 0.016553 45 0.013919 50 0.009843 70 0.008277 80 0.006960 100 0.005852 120 0.004921 140 0.002926 230 0.002461 270 0.002461 270 0.002461 270 0.002461 270 0.002461 270 0.002461 270 0.002461 270 0.00269 325 0.001740 400 0.001463 450 0.00123 635 0.000870 0.000517 0.000038 0.000217 0.000183 0.000129 0.000129 0.000129 0.0000129 0.0000129 0.0000129 0.0000129	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18 0.039370 1.00000 0.00 0.267 20 0.033106 0.84090 0.25 0.351 25 0.027899 0.70711 0.50 0.472 30 0.023410 0.59460 0.75 0.586 35 0.019685 0.50000 1.00 0.759 40 0.016553 0.42045 1.25 1.093 45 0.013919 0.35355 1.50 1.713 50 0.011705 0.29730 1.75 2.389 60 0.009843 0.25000 2.00 3.144 70 0.008277 0.21022 2.25 3.640 80 0.006960 0.17678 2.50 4.026 100 0.005852 0.14865 2.75 4.368 120 0.004921 0.12500 3.00 5.093 140 0.002461 0.06256 4.25 5.004 270	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18 0.39370 1.00000 0.00 0.267 0.57 (in) 20 0.033106 0.84090 0.25 0.351 0.927 (in) 25 0.027839 0.70711 0.50 0.472 1.39 (im) 30 0.023410 0.59460 0.75 0.586 1.98 (im) 40 0.016553 0.42045 1.25 1.093 3.83 (im) 40 0.016553 0.42045 1.25 1.093 3.84 (im) 50 0.011705 0.29730 1.75 2.389 7.93 (im) 60 0.008243 0.25000 2.00 3.144 11.08 Skewness 100 0.0084138 0.17678 2.50 4.026 18.75 (im) 120 0.004921 0.12500 3.00 5.093 28.21 Kurtosis 140 0.002461 0.06256 4.25 5.004 5.28 33.75 220 0.002461	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Catsolence	7440 LINCOLN WAY CAPTEN GEOVE CA 92841-1427	7000-00	ſ	TO: Core Labs	abs			\wedge	CHAII DATE:	N OF	CHAIN OF CUSTODY RECORD DATE: 10/27/10	Y REC	ORD	
Any competition	TEL: (714) 895-5494 . FAX: (714) 894-7501	:: (714) 894-7501	/						PAGE:		1 OF			11
						CTENT DECT NAME / NUMBER	ME / NI 199	ZER.						Г
LABORATORY CLIENT: Calscience Environmental Laboratories, Inc.	ental Laboratories, li	nc.					10-10	10-10-2159	0		5			
ADDRESS: 7440 Lincoln Wav					PROJEC	PROJECT CONTACT:					QUOTE NO.:			Т
Garden Grove. CA 92841-1427	-1427						Ranjit	Ranjit Clarke	e		LAB USE ONLY			T
TEL: (714) 895-5494		rclarke@calscience.com	ce.com		SAMPLE	SAMPLER(S): (PRINT)					410094	74		
TURNAROUND TIME		5 DAYS	X	Normal				REQ	JESTEI	ANA C	REQUESTED ANALYSIS			
SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY)		S UNTIL	-											
SPECIAL INSTRUCTIONS						19HH								
					Saturation Seturation	Distributio	1							
LAB		SAMPLING			T.									
USE SAN	SAMPLE ID	DATE	TIME	aatrit	14									
UV-5-28		10/27/10	11:47	S 3	×	×								
(
Relinquished by: (Sighature)	7	(CALSCIENCE)		Received by / Affiliation: (Signature)	ion: (Signature)		5152	515249825	52	e O	Date: 10/28/10	Ē	1600	-
Relinquished by: (Signature)		-		Received W / Amilat	liation: (Signature)	ic L	2			Da Da	Date: 10 2 7 10	Time:	e: 830	
Relinquished by: (Signature)				Réceived by / Affiliat	y / Affiliation: (Signature)	()	1			ő	Date:	Time:		